The Quiet Revolution in 3D Printed Medical Prosthetics

It’s almost impossible to miss all the news about revolutionary 3D printers and genius engineers who have built 3D printed hands, legs and other body parts with complex articulated joints for a fraction of the cost of analog processes. However, there is a quieter revolution that’s been going on in the medical industry for years, which doesn’t get all the hype but has made just as great of an impact to people’s lives and the medical industry at large.

The Transition to 3D Milling

A patient’s ear, before (left) and after (right) the use of a prosthetic created with a 3D milling machine. Picture courtesy of the Medical Arts Prosthetics Clinic.

A patient’s ear, before (left) and after (right) the use of a prosthetic created with a 3D milling machine. Picture courtesy of the Medical Arts Prosthetics Clinic.

Prosthetic production used to be the domain of extremely gifted artists who handcrafted artificial limbs, ears, teeth and other prosthetic parts out of natural materials or by hand-making molds in wax or plaster for casting various thermoplastic, composite or synthetic materials. In fact, traditional methods and materials are still being used today, with a small minority of prosthetic providers fulfilling the role of craftsmen and intricately carving or casting pieces to exactly fit the patient. Unfortunately, handcrafting items is a very lengthy and expensive process for patients and the quiet revolution of digital technology and software over the last 10 years has fundamentally changed the industry.

Although 3D printed prosthetics make headlines, it has actually been CAD/CAM software and subtractive 3D milling technology – as opposed to additive printing – that has quietly advanced prosthetics production and brought it to the point where ultra-precise prosthetics and molds are now being created in a fraction of the time and cost, with greater detail and realistic quality.

The Value of 3D Milling

People afflicted by cancer, congenital conditions, or trauma seek help from places like the Medical Art Prosthetics Clinic in Dallas, Texas, who specialize in prosthetics for fingers, toes and facial features. Allison Vest, MS, an anaplastologist with the Medical Art Prosthetics Clinic, explains how new 3D methods have made her job much easier and more accurate.

3D milling examples of medical prosthesis ears by the Medical Arts Prosthetics Clinic, Dallas Texas

3D milling examples of medical prosthesis ears by the Medical Arts Prosthetics Clinic, Dallas Texas

“Before, I would heat a pot of wax and carve the ear by hand,” said Vest. “3D milling technology creates a mirror image of the patient’s existing ear with extreme accuracy, and allows me to focus on fitting and finishing the prosthesis. The milling accuracy is incredible. I use the .2 millimeter setting, which provides precise skin texture details.”

Allison Vest and the majority of technicians who create artificial ears, noses, fingers and other aesthetic prosthetics are now using computer software to digitally render prosthetics, and 3D milling methods to turn the data into realistic prosthetics. Although not as highly talked about as 3D printed parts, the switch from traditional methods of production to the digital milling of prosthetics has been massively significant in the lives of patients, lowering cost and time while improving accuracy.

Dental Prosthetics and 3D Milling

Possibly the most radical change in this quiet revolution of prosthetic production has been in the competitive world of dental prosthetics. For nearly a century, hand- crafting and casting of crowns and other prosthetics has been done in a multi-step procedure that includes dipping dies, waxing, spruing, and then casting. But over the last decade and especially the last 5 years, labs have evolved from an industry that relied on the skill of lab technicians, to a digital industry that utilizes 3D scanning and CNC milling to create prosthetics in a fraction of the time and cost.

Close-up of a CNC dental milling machine in the process of creating a prosthetic

Close-up of a CNC dental milling machine in the process of creating a prosthetic

Everything from crowns to bridges can be precisely produced in hours rather than days. The growth of CNC dental technology has also meant that US labs are able to compete again with an overseas market that had turned the craft of prosthetic making into a production line industry. Mark Jackson from Precision Ceramics Dental Laboratory in Montclair, California, explained how the industry has greatly improved since the introduction of 3D dental milling technology.

“These days, at least 30 percent of dental prosthetics production for the United States market is being carried out overseas because of cheaper labor,” said Jackson. “With CAD/CAM milling technology, we can compete on price and deliver products faster than labs overseas can.”

The Reasons Behind 3D Milled Prosthetics

It’s important to note that the artistic skill of prosthetic makers has not died out. There is still a need for artists to paint the fine details of ears, teeth and other items.  However, with the accessibility and affordability of rapid prototype milling machines, scanning technology and software, the process is faster, more affordable and offers a greater choice of materials than 3D printing. In addition, the technology is more accessible for patients. Impressions are less invasive, turnaround times are dramatically reduced, replacements can be provided very quickly, and there is consistency in the quality which was previously dependent on an artist’s individual skill.

The Future of 3D Prosthetic Production

Even though 3D printing technology is improving every day, 3D milling machines will continue to be the product of choice for many prosthetic makers. However, it’s undeniable that both 3D printing and 3D milling technologies have and are redefining the prosthetics industry by changing the lives of patients and creating exciting new tech opportunities. On reflection of the dramatic changes that 3D milling technology has caused over the last decade, maybe the revolution has not been so quiet after all?

Ben Fellowes is the Sr. Copywriter for Roland DGA Corporation, a technology company that specialize in large format printing, dental milling, 3D production and rapid prototyping machines. He loves art, punk rock, horror films, Sci-Fi, comic books, real beer, cooking and eating.

Soviet report detailing lunar rover Lunokhod-2 released for first time

Russian space agency Roskosmos has released an unprecedented scientific report into the lunar rover Lunokhod-2 for the first time, revealing previously unknown details about the rover and how it was controlled back on Earth.

The report, written entirely in Russian, was originally penned in 1973 following the Lunokhod-2 mission, which was embarked upon in January of the same year. It had remained accessible to only a handful of experts at the space agency prior to its release today, to mark the 45th anniversary of the mission.

Bearing the names of some 55 engineers and scientists, the report details the systems that were used to both remotely control the lunar rover from a base on Earth, and capture images and data about the Moon’s surface and Lunokhod-2’s place on it. This information, and in particularly the carefully documented issues and solutions that the report carries, went on to be used in many later unmanned missions to other parts of the solar system.

As a result, it provides a unique insight into this era of space exploration and the technical challenges that scientists faced, such as the low-frame television system that functioned as the ‘eyes’ of the Earth-based rover operators.

A NASA depiction of the Lunokhod mission. Above: an image of the rover, courtesy of NASA, overlaid onto a panorama of the Moon taken by Lunokhod-2, courtesy of Ruslan Kasmin.

One detail that main be of particular interest to space enthusiasts and experts is the operation of a unique system called Seismas, which was tested for the first time in the world during the mission.

Designed to determine the precise location of the rover at any given time, the system involved transmitting information over lasers from ground-based telescopes, which was received by a photodetector onboard the lunar rover. When the laser was detected, this triggered the emission of a radio signal back to the Earth, which provided the rover’s coordinates.

Other details, while technical, also give some insight into the culture of the mission, such as the careful work to eliminate issues in the long-range radio communication system. One issue, for example, was worked on with such thoroughness that it resulted in one of the devices using more resources than it was allocated, a problem that was outlined in the report.

The document also provides insight into on-Earth technological capabilities of the time. While it is mostly typed, certain mathematical symbols have had to be written in by hand, and the report also features a number of diagrams and graphs that have been painstakingly hand-drawn.

A hand-drawn graph from the report, showing temperature changes during one of the monitoring sessions during the mission

Lunokhod-2 was the second of two unmanned lunar rovers to be landed on the Moon by the Soviet Union within the Lunokhod programme, having been delivered via a soft landing by the unmanned Luna 21 spacecraft in January 1973.

In operation between January and June of that year, the robot covered a distance of 39km, meaning it still holds the lunar distance record to this day.

One of only four rovers to be deployed on the lunar surface, Lunokhod-2 was the last rover to visit the Moon until December 2013, when Chinese lunar rover Yutu made its maiden visit.

Robot takes first steps towards building artificial lifeforms

A robot equipped with sophisticated AI has successfully simulated the creation of artificial lifeforms, in a key first step towards the eventual goal of creating true artificial life.

The robot, which was developed by scientists at the University of Glasgow, was able to model the creation of artificial lifeforms using unstable oil-in-water droplets. These droplets effectively played the role of living cells, demonstrating the potential of future research to develop living cells based on building blocks that cannot be found in nature.

Significantly, the robot also successfully predicted their properties before they were created, even though this could not be achieved using conventional physical models.

The robot, which was designed by Glasgow University’s Regius Chair of Chemistry, Professor Lee Cronin, is driven by machine learning and the principles of evolution.

It has been developed to autonomously create oil-in-water droplets with a host of different chemical makeups and then use image recognition to assess their behaviour.

Using this information, the robot was able to engineer droplets to have different properties­. Those which were found to be desirable could then be recreated at any time, using a specific digital code.

“This work is exciting as it shows that we are able to use machine learning and a novel robotic platform to understand the system in ways that cannot be done using conventional laboratory methods, including the discovery of ‘swarm’ like group behaviour of the droplets, akin to flocking birds,” said Cronin.

“Achieving lifelike behaviours such as this are important in our mission to make new lifeforms, and these droplets may be considered ‘protocells’ – simplified models of living cells.”

One of the oil droplets created by the robot

The research, which is published today in the journal PNAS, is one of several research projects being undertaken by Cronin and his team within the field of artificial lifeforms.

While the overarching goal is moving towards the creation of lifeforms using new and unprecedented building blocks, the research may also have more immediate potential applications.

The team believes that their work could also have applications in several practical areas, including the development of new methods for drug delivery or even innovative materials with functional properties.