The Quiet Revolution in 3D Printed Medical Prosthetics

It’s almost impossible to miss all the news about revolutionary 3D printers and genius engineers who have built 3D printed hands, legs and other body parts with complex articulated joints for a fraction of the cost of analog processes. However, there is a quieter revolution that’s been going on in the medical industry for years, which doesn’t get all the hype but has made just as great of an impact to people’s lives and the medical industry at large.

The Transition to 3D Milling

A patient’s ear, before (left) and after (right) the use of a prosthetic created with a 3D milling machine. Picture courtesy of the Medical Arts Prosthetics Clinic.

A patient’s ear, before (left) and after (right) the use of a prosthetic created with a 3D milling machine. Picture courtesy of the Medical Arts Prosthetics Clinic.

Prosthetic production used to be the domain of extremely gifted artists who handcrafted artificial limbs, ears, teeth and other prosthetic parts out of natural materials or by hand-making molds in wax or plaster for casting various thermoplastic, composite or synthetic materials. In fact, traditional methods and materials are still being used today, with a small minority of prosthetic providers fulfilling the role of craftsmen and intricately carving or casting pieces to exactly fit the patient. Unfortunately, handcrafting items is a very lengthy and expensive process for patients and the quiet revolution of digital technology and software over the last 10 years has fundamentally changed the industry.

Although 3D printed prosthetics make headlines, it has actually been CAD/CAM software and subtractive 3D milling technology – as opposed to additive printing – that has quietly advanced prosthetics production and brought it to the point where ultra-precise prosthetics and molds are now being created in a fraction of the time and cost, with greater detail and realistic quality.

The Value of 3D Milling

People afflicted by cancer, congenital conditions, or trauma seek help from places like the Medical Art Prosthetics Clinic in Dallas, Texas, who specialize in prosthetics for fingers, toes and facial features. Allison Vest, MS, an anaplastologist with the Medical Art Prosthetics Clinic, explains how new 3D methods have made her job much easier and more accurate.

3D milling examples of medical prosthesis ears by the Medical Arts Prosthetics Clinic, Dallas Texas

3D milling examples of medical prosthesis ears by the Medical Arts Prosthetics Clinic, Dallas Texas

“Before, I would heat a pot of wax and carve the ear by hand,” said Vest. “3D milling technology creates a mirror image of the patient’s existing ear with extreme accuracy, and allows me to focus on fitting and finishing the prosthesis. The milling accuracy is incredible. I use the .2 millimeter setting, which provides precise skin texture details.”

Allison Vest and the majority of technicians who create artificial ears, noses, fingers and other aesthetic prosthetics are now using computer software to digitally render prosthetics, and 3D milling methods to turn the data into realistic prosthetics. Although not as highly talked about as 3D printed parts, the switch from traditional methods of production to the digital milling of prosthetics has been massively significant in the lives of patients, lowering cost and time while improving accuracy.

Dental Prosthetics and 3D Milling

Possibly the most radical change in this quiet revolution of prosthetic production has been in the competitive world of dental prosthetics. For nearly a century, hand- crafting and casting of crowns and other prosthetics has been done in a multi-step procedure that includes dipping dies, waxing, spruing, and then casting. But over the last decade and especially the last 5 years, labs have evolved from an industry that relied on the skill of lab technicians, to a digital industry that utilizes 3D scanning and CNC milling to create prosthetics in a fraction of the time and cost.

Close-up of a CNC dental milling machine in the process of creating a prosthetic

Close-up of a CNC dental milling machine in the process of creating a prosthetic

Everything from crowns to bridges can be precisely produced in hours rather than days. The growth of CNC dental technology has also meant that US labs are able to compete again with an overseas market that had turned the craft of prosthetic making into a production line industry. Mark Jackson from Precision Ceramics Dental Laboratory in Montclair, California, explained how the industry has greatly improved since the introduction of 3D dental milling technology.

“These days, at least 30 percent of dental prosthetics production for the United States market is being carried out overseas because of cheaper labor,” said Jackson. “With CAD/CAM milling technology, we can compete on price and deliver products faster than labs overseas can.”

The Reasons Behind 3D Milled Prosthetics

It’s important to note that the artistic skill of prosthetic makers has not died out. There is still a need for artists to paint the fine details of ears, teeth and other items.  However, with the accessibility and affordability of rapid prototype milling machines, scanning technology and software, the process is faster, more affordable and offers a greater choice of materials than 3D printing. In addition, the technology is more accessible for patients. Impressions are less invasive, turnaround times are dramatically reduced, replacements can be provided very quickly, and there is consistency in the quality which was previously dependent on an artist’s individual skill.

The Future of 3D Prosthetic Production

Even though 3D printing technology is improving every day, 3D milling machines will continue to be the product of choice for many prosthetic makers. However, it’s undeniable that both 3D printing and 3D milling technologies have and are redefining the prosthetics industry by changing the lives of patients and creating exciting new tech opportunities. On reflection of the dramatic changes that 3D milling technology has caused over the last decade, maybe the revolution has not been so quiet after all?

Ben Fellowes is the Sr. Copywriter for Roland DGA Corporation, a technology company that specialize in large format printing, dental milling, 3D production and rapid prototyping machines. He loves art, punk rock, horror films, Sci-Fi, comic books, real beer, cooking and eating.

Atari tells fans its new Ataribox console will arrive in late 2018

Atari has revealed more details about its Ataribox videogame console today, with the company disclosing that the console will ship in late 2018 for somewhere between $249 and $299.

Atari says that it will launch the Ataribox on Indiegogo this autumn.

The company said it chose to launch the console in this way because it wants fans to be part of the launch, be able to gain access to early and special editions, as well as to make the Atari community “active partners” in the rollout of Ataribox.

“I was blown away when a 12-year-old knew every single game Atari had published. That’s brand magic. We’re coming in like a startup with a legacy,” said Ataribox creator and general manager Feargal Mac in an interview with VentureBeat.

“We’ve attracted a lot of interest, and AMD showed a lot of interest in supporting us and working with us. With Indiegogo, we also have a strong partnership.”

Images courtesy of Atari

Atari also revealed that its new console will come loaded with “tons of classic Atari retro games”, and the company is also working on developing current titles with a range of studios.

The Ataribox will be powered by an AMD customised processor, with Radeon Graphics technology, and will run Linux, with a customised, easy-to-use user interface.

The company believes this approach will mean that, as well as being a gaming device, the Ataribox will also be able to service as a complete entertainment unit that delivers a full PC experience for the TV, bringing users streaming, applications, social, browsing and music.

“People are used to the flexibility of a PC, but most connected TV devices have closed systems and content stores,” Mac said. “We wanted to create a killer TV product where people can game, stream and browse with as much freedom as possible, including accessing pre-owned games from other content providers.”

In previous releases, Atari has said that it would make two editions of its new console available: a wood edition and a black and red version.

After being asked by many fans, the company has revealed that the wood edition will be made from real wood.

Atari has asked that fans let it know what they think of the new console via its social channels

Scientists, software developers and artists have begun using VR to visualise genes and predict disease

A group of scientists, software developers and artists have taken to using virtual reality (VR) technology to visualise complex interactions between genes and their regulatory elements.

The team, which comprises of members from Oxford University, Universita’ di Napoli and Goldsmiths, University of London, have been using VR to visualise simulations of a composite of data from genome sequencing, data on the interactions of DNA and microscopy data.

When all this data is combined the team are provided with an interactive, 3D image that shows where different regions of the genome sit relative to others, and how they interact with each other.

“Being able to visualise such data is important because the human brain is very good at pattern recognition – we tend to think visually,” said Stephen Taylor, head of the Computational Biology Research Group at Oxford’s MRC Weatherall Institute of Molecular Medicine (WIMM).

“It began at a conference back in 2014 when we saw a demonstration by researchers from Goldsmiths who had used software called CSynth to model proteins in three dimensions. We began working with them, feeding in seemingly incomprehensible information derived from our studies of the human alpha globin gene cluster and we were amazed that what we saw on the screen was an instantly recognisable model.”

The team believe that being able to visualise the interactions between genes and their regulatory elements will allow them to understand the basis of human genetic diseases, and are currently applying their techniques to study genetic diseases such as diabetes, cancer and multiple sclerosis.

“Our ultimate aim in this area is to correct the faulty gene or its regulatory elements and be able to re-introduce the corrected cells into a patient’s bone marrow: to perfect this we have to fully understand how genes and their regulatory elements interact with one another” said Professor Doug Higgs, a principal researcher at the WIMM.

“Having virtual reality tools like this will enable researchers to efficiently combine their data to gain a much broader understanding of how the organisation of the genome affects gene expression, and how mutations and variants affect such interactions.”

There are around 37 trillion cells in the average adult human body, and each cell contains two meters of DNA tightly packed into its nucleus.

While the technology to sequence genomes is well established, it has been shown that the manner in which DNA is folded within each cell affects how genes are expressed.

“There are more than three billion base pairs in the human genome, and a change in just one of these can cause a problem. As a model we’ve been looking at the human alpha globin gene cluster to understand how variants in genes and their regulatory elements may cause human genetic disease,” said Prof Jim Hughes, associate professor of Genome Biology at Oxford University.