All posts by Lucy Ingham

Beyond biomimicry: Scientists find better-than-nature run style for six-legged robots

Researchers have found a running style for six-legged robots that significantly improves on the traditional nature-inspired method of movement.

The research, conducted by scientists at the École Polytechnique Fédérale de Lausanne (EPFL) and the University of Lausanne (UNIL) in Switzerland, found that as long as the robots are not equipped with insect-like adhesive pads, it is faster for them to move with only two legs on the ground at any given time.

Robotics has in the past few years made heavy use of biomimicry – the practice of mimicking natural systems – resulting in six-legged robots being designed to move like insects. In nature, insects use what is known as a tripod gait, where they have three legs on the ground at a time, so it had been assumed that this was the most efficient way for similarly legged robots to move.

However, by undertaking a series of computer simulations, tests on robots and experiments on Drosophila melanogaster – better known as the common fruit fly – the scientists found that the two-legged approach, which they have dubbed the bipod gait, results in faster and more efficient movement.

The core goal of the research, which is published today in the journal Nature Communications, was to confirm whether the long-held assumption that a tripod gait was best was indeed correct.

“We wanted to determine why insects use a tripod gait and identify whether it is, indeed, the fastest way for six-legged animals and robots to walk,” said Pavan Ramdya, study co-lead and corresponding author.

Initially, this involved the use of a simulated insect model based on the common fruit fly and an algorithm designed to mimic different evolutionary stages. This algorithm simulated different potential gaits to create a shortlist of those that it deemed to be the fastest.

This, however, shed light on why insects have a tripod gait – and why it may not be the best option for robots. The simulations showed that the traditional tripod gait works in combination with the adhesive pad found on the ends of insects’ legs to make climbing over vertical surfaces such as rocks easier and quicker.

Robots, however, are typically designed to walk along flat surfaces, and so the benefits of such a gait are lost.

“Our findings support the idea that insects use a tripod gait to most effectively walk on surfaces in three dimensions, and because their legs have adhesive properties. This confirms a long-standing biological hypothesis,” said Ramdya. “Ground robots should therefore break free from only using the tripod gait”.

Study co-lead authors Robin Thandiackal (left) and Pavan Ramdya with the six-legged robot used in the research. Images courtesy of EPFL/Alain Herzog

To for always corroborate the simulation’s findings, the researchers built a six-legged robot that could move either with a bipod or tripod gait, and which quickly confirmed the research by being faster when moving with just two legs on the ground at once.

However, they went further by confirming that the adhesive pads were in fact playing a role in the insect’s tripod movement.

They did this by equipping the fruit flies with tiny polymer boots that would cover the adhesive pads, and so remove their role in the way the insects moved. The flies’ responses confirms their theory: they began moving with a bipod-like gate rather than their conventional tripod-style movement.

“This result shows that, unlike most robots, animals can adapt to find new ways of walking under new circumstances,” said study co-lead author Robin Thandiackal.

As bizarre as the research sounds, it provides valuable new insights both for roboticists and biologists, and could lead to a new standard in the way that six legged robots are designed to move.

“There is a natural dialogue between robotics and biology: Many robot designers are inspired by nature and biologists can use robots to better understand the behavior of animal species,” added Thandiackal. “We believe that our work represents an important contribution to the study of animal and robotic locomotion.”

DJI presents vision of the urban future with drone-friendly skybridge

DJI, the world’s largest small drone company, has commissioned plans for a futuristic skybridge from which its employees will be able to observe and pilot drones.

The plans are some of the first to include drone operation and observation in the urban infrastructure, and offer a glimpse of what architecture designed for a drone-filled world could look like.

Designed by architecture studio Preliminary Research Office, the pedestrian bridge is designed to connect the two skyscrapers that will serve as its new headquarters in Shenzhen, China. The two-storey skybridge will connect one skyscraper on its 28th floor, and the other on its 28th and 29th floors.

Made from a series of intersecting cones, the structure features drone observation spaces over two different floors, a viewing deck providing views of the surrounding city and a number of meeting spaces.

Located immediately north of Hong Kong, Shenzhen is a major hub for hardware development and manufacturing, and has been home to DJI since its founding in 2006.

The dramatic growth of the company, fuelled in part by the success of its consumer-friendly Phantom line, as well as the more commercially targeted Inspire range, has required it to move to for larger premises in recent years. The release of these rendering and supporting plans from Preliminary Research Office suggests that that expansion is now going further.

In addition, it indicates that DJI is keen to have its own outdoor space to demonstrate and potentially test new drones, which are surprisingly rare sight in the Chinese city, despite it being known as the Silicon Valley of China.

Images courtesy of Preliminary Research Office via ArchDaily

As drones become more widespread both as a consumer product for entertainment purposes and as a commercial tool for activities including photography, surveillance and building inspections, they are likely to become more common sight in cities where they are allowed to fly. This will require the creation of suitable launching, landing and piloting spaces, with this design providing one of the first depictions of what such spaces could look like.

It could also add to the growing body of work associated with the development of delivery drones, which in developed nations look set to be pioneered by companies including Amazon. While considerable work has been undertaken to develop drones fit for the task, comparatively little has been done to develop supporting infrastructure and architecture.

Neither DJI nor Preliminary Research Office have provided any timeline for the skybridge as yet, however assuming the company likes the design, we could see the project realised within a relatively short timescale.