Eight-year study casts serious doubt on future food security

An extensive study designed to simulate the growing conditions of the future has cast significant doubt on widely held assumptions about the impact of climate change on food production, suggesting that we will face significant crop failures far sooner than previously thought.

The study, which is published today in the journal Nature Plants, saw researchers from the University of Illinois conduct an eight year-long study of soybeans that were grown outdoors in a carbon dioxide-rich atmosphere.  This was designed to mimic the higher atmospheric CO₂ concentrations that we are projected to experience by 2050.

It had been thought that the increased levels of CO₂ would balance future water shortages, by prompting the plans to reduce the size of the pores in their leaves and so reducing gaseous exchange with the atmosphere. This would reduce the amount of water the plants needed from the soil, resulting in crops that were only minimally affected by climate change.

“If you read the most recent Intergovernmental Panel on Climate Change reports and if you read the scientific literature on the subject for the last 30 years, the concluding statement is nearly always that elevated carbon dioxide will ameliorate drought stress in crops,” explained lead author Andrew Leakey, an associate professor of plant biology at the University of Illinois.

However, the study found a flaw in that premise, in that it only works in wetter growing seasons.

“[The theory] was consistent with what we saw with our own experiments the first four years, the relatively wet years,” added Leakey. “But when the growing seasons were hot and dry, that pattern broke down.”

The Soybean Free Air Concentration Enrichment facility, which allowed researchers to simulate the CO₂-rich environment of 2050. Image courtesy of Don Hamerman

The Soybean Free Air Concentration Enrichment facility, which allowed researchers to simulate the CO₂-rich environment of 2050. Image courtesy of Don Hamerman

The researchers created the CO₂-rich environment in real farm fields using a technology known as the Soybean Free Air Concentration Enrichment Facility. This featured sensors that that can measure wind speed and direction, prompting the regulated release of gases to simulate higher concentrations of CO₂.

This allowed the researchers to determine that plants grown in a hot, dry CO₂-rich environment needed more water than plants growing under the same conditions but with current atmospheric CO₂ levels; the opposite of what previous research had suggested.

“All of the model predictions up to this point were assuming that in 2050, elevated CO₂ was going to give us a 15% increase in yield over what we had at the beginning of this century,” Leakey said. “And what we’re seeing is that as it gets hotter and drier, that number diminishes to zero. No gain.

“What we think is happening is that early in the growing season, when the plant has enough water, it’s able to photosynthesize more as a result of the higher CO2 levels. It’s got more sugars to play with, it grows more, it creates all this extra leaf area. But when it gets dry, the plant has overextended itself, so later in the season it’s now using more water.”

soybean-crop

The research has significant implications for the management of food security in the future, with soybeans being the fourth biggest food crop in the world by area harvested.

In addition to providing a valuable source of protein for nonmeat eaters, they are used in a wide array of foods, oils and sauces, particularly in East Asia where the crop has formed a significant part of the diet since at least 7,000 BC.

Soybeans are also used extensively for livestock feed, making their importance for food security even greater.

The farms of the future may well be like factories

A new report has indicated that massive changes will be coming to the agricultural markets within the next ten years, perhaps most notably farming, courtesy of various advances in robotics and drones.

The report, by IDTechEx Research, highlights how these technologies will enter into different aspects of agriculture, transforming the methods behind farming and having a significant impact on the workforce in the process.

Probably the largest change coming to farming is the mass-scale automation that looks to be employed across various aspects of the industry.

While current farms are by no means stuck using purely antiquated methods – there are already thousands of robotic milking parlours across the world, for example – there are large sections of the work that are still reliant on human workers.

This is due to both the fact that many robots are not currently smart enough to perform crucial tasks and regulatory measures; as with autonomous technologies in general there is considerable legislation involved in approving their usage.

farming-top-down

However, it seems that in the next ten years we can expect to see ever-smarter robots taking over those roles that we previously had set aside for humans.

Notably, these technologies will not only be independently advancing the farming processes, but can contribute to elements of each other’s roles.

In the air, for example, both remote-controlled and autonomous drones will map the farms below them. That’s data that can then be used to better guide the small robots that will be navigating among crops, analysing the plants and removing weeds.

These robots will then learn their routes the more they are deployed to better navigate themselves.

farming-drone

On a broad scale then, we can see that farming is set to radically change in the next few years as more and more of the jobs that have been traditionally limited to human workers are taken over by autonomous robots. It appears that agriculture is set to join the other industries that will rely on workforces transforming into engineers for the robots that are automating their former roles.

In the fields and in the sky, farming will be essentially run by a series of robotic workers capable of working autonomously just as soon as they are set to the job. Arguably, within the next ten years, we will see farmers transition from oversight of their crops and cattle to oversight of a vast fleet of robots and drones handling the daily work.

Visiting these farms, you won’t be looking at groups of workers assigned to do their various, individual duties but sections of robots discreetly trundling among crops, aided by drones overhead with their mapping while, in the background, tractors steer themselves around their duties.

We can predict that the drone will be the focal point, the farmer’s point of view that then sees a robotic workforce set to their various duties then left to run their processes automatically, occasionally put back on course by a fruit picker-turned-engineer.