The Elon Musk Offer: Extinction or Explosion

Elon Musk wants to take you to Mars. He also wants you to know that there’s a very good chance you’ll die doing so. Yesterday, at the International Astronautical Congress, Musk announced a lot more about SpaceX’s plans to get to Mars and opened up a little about the notion of colonising the Red Planet. He was also, almost shockingly, upfront about just how much such a mission is likely to kill you.

Musk’s speech, entitled Making Humans a Multiplanetary Species, largely consisted of explaining more about SpaceX’s Interplanetary Transport System and how the company plans to get people and supplies to Mars.

The plan involves 28,730,000 pounds of thrust and reusable booster rockets. And while Musk spoke about colonisation, it was in a way that very much avoided any kind of commitment on how such a colony would work and what role SpaceX would possibly play in it.

For now it seems the entrepreneur is very much focused on just getting there.

Images courtesy of SpaceX

Images courtesy of SpaceX

What was mentioned was the idea of a self-sustaining civilisation, presumably making some sort of use of Musk’s various clean energy ventures, and the goal of making the cost of a trip to Mars that of a median price house in the United States.

In order to do so we need four things: reusable rockets, refuelling the spaceship in space, using methane fuel rather than traditional propellant and harvesting methane fuel from Mars itself.

If it sounds like a lot of work, be assured it is; Musk made no mention of the infrastructure that would support this though he did point out that there would be no shortage of jobs on Mars if successful. Provided you get there of course.

Even allowing for the overcoming of technical challenges, there is still a very good chance that our initial tries at getting people there will fail horribly.

“The risk of fatality will be high,” Musk told the audience. “There’s no way around it. It would be basically, are you prepared to die? If that’s okay, you’re a candidate for going.

“The probability of death is quite high on the first mission.”

Elon Musk during the talk

Elon Musk during the talk

Musk’s honesty is kind of refreshing, even if it’s distinctly bleak. The chances of such a mission going perfectly on the first try are very low and it’s important to remember for anyone caught up in the excitement of going multiplanetary that there is a good chance of a cold death in space waiting out there.

That said, as Musk pointed out, staying on Earth indefinitely almost certainly ends in some kind of extinction event.

There is currently far too much uncertainty around the way in which a colony on Mars would actually work, the likelihood is that there would have to be some kind of governmental oversight of the colonisation and there are obviously chances of a whole new space race that come along with that.

Musk’s presentation was there to offer up a choice: stay on Earth and face extinction in what may be the far future or go to Mars now and almost definitely go out in a blaze of glory.

Researchers discover remains of “Triassic Jaws” who dominated the seas after Earth’s most severe mass extinction event

Researchers have discovered the fossil remains of an unknown large predatory fish called Birgeria: an approximately 1.8-meter-long primitive bony fish with long jaws and sharp teeth that swallowed its prey whole.

Swiss and US researchers led by the Paleontological Institute and Museum of the University of Zurich say the Birgeria dominated the sea that once covered present-day Nevada one million years after the mass extinction.

Its period of dominance began following “the most catastrophic mass extinction on Earth”, which took place about 252 million years ago – at the boundary between the Permian and Triassic geological periods.

Image courtesy of UZH. Featured image courtesy of Nadine Bösch

Up to 90% of the marine species of that time were annihilated, and before the discovery of the Birgeria, palaeontologists had assumed that the first predators at the top of the food chain did not appear until the Middle Triassic epoch about 247 to 235 million years ago.

“The surprising find from Elko County in northeastern Nevada is one of the most completely preserved vertebrate remains from this time period ever discovered in the United States,” emphasises Carlo Romano, lead author of the study.

Although, species of Birgeria existed worldwide. The most recent discovery belongs to a previously unknown species called Birgeria Americana, and is the earliest example of a large-sized Birgeria species, about one and a half times longer than geologically older relatives.

The researchers say the discovery of Birgeria is proof that food chains recovered quicker than previously thought from Earth’s most devastating mass extinction event.

According to earlier studies, marine food chains were shortened after the mass extinction event and recovered only slowly and stepwise.

However, finds such as the newly discovered Birgeria species and the fossils of other vertebrates now show that so-called apex predators (animals at the very top of the food chain) already lived early after the mass extinction.

“The vertebrates from Nevada show that previous interpretations of past biotic crises and associated global changes were too simplistic,” said Romano.

Revolutionary DNA sunscreen gives better protection the longer its worn

Researchers have developed a ground-breaking sunscreen made of DNA that offers significant improvements over conventional versions.

Unlike current sunscreens, which need to be reapplied regularly to remain effective, the DNA sunscreen improves over time, offering greater protection the longer it is exposed to the sun.

In addition, it also keeps the skin hydrated, meaning it could also be beneficial as a treatment for wounds in extreme or adverse environments.

Developed by researchers from Binghamton University, State University of New York, the innovative sunscreen could prove essential as temperatures climb and many are increasingly at risk of conditions caused by excessive UV exposure, such as skin cancer.

“Ultraviolet (UV) light can actually damage DNA, and that’s not good for the skin,” said Guy German, assistant professor of biomedical engineering at Binghamton University.

“We thought, let’s flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin.”

The DNA sunscreen has the potential to become a standard, significantly improving the safety of spending time in the sun

The research, which is published today in the journal Scientific Reports, involved the development of thin crystalline DNA films.

These films are transparent in appearance, but able to absorb UV light; when the researchers exposed the film to UV light, they found that its absorption rate improved, meaning the more UV is was exposed to, the more it absorbed.

“If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen,” said German.

The film will no doubt attract the attention of sunscreen manufacturers, who will likely be keen to commercialise such a promising product. However, the researchers have not said if there is any interest as yet, and if there is any clear timeline to it becoming a commercial product.

 

The film’s properties are not just limited to sun protection, however. The DNA film can also store water at a far greater rate than conventional skin, limiting water evaporation and increasing the skin’s hydration.

As a result, the film is also being explored as a wound covering, as it would allow the wound to be protected from the sun, keep it moist – an important factor for improved healing – and allow the wound to be monitored without needing to remove the dressing.

“Not only do we think this might have applications for sunscreen and moisturizers directly, but if it’s optically transparent and prevents tissue damage from the sun and it’s good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments,” said German.