Scientists urge governments to turn old TV frequencies into free “super WiFi”

Governments should sack plans to auction off old television frequencies to the highest bidder and instead use the bandwidth for free super-frequency WiFi if they want to boost the economy, scientists have said.

Old television frequencies are becoming available for other uses around the world, thanks to a switch from analogue to digital transmission.

However, while governments are for the most part auctioning these off to whoever is prepared to pay the most – usually mobile phone networks – they should instead be using the frequencies to create free-to-use, wide-range WiFi, scientists from the Karlsruhe Institute of Technology (KIT) in Germany have said.

This new “super WiFi” would have a far wider range than existing WiFi networks, which are mostly transmitted over wireless local area networks (WLAN) at frequencies of 2GHz or above.

laptop-wifi

WiFi transmitted over old TV frequencies could be transmitted at lower frequencies than traditional WiFi, resulting in a far wider area covered. This super WiFi’s coverage area could even be as big as several kilometres in radius, a massive improvement on existing networks.

This would mean that pricey mobile services such as 4G were no longer required, which the scientists believe would lead to more mobile internet use, and a wealth of economic benefits.

“Implementation of our approach would have far-reaching consequences,” said Arnd Weber of the Institute for Technology Assessment and Systems Analysis (ITAS) at KIT.

“Individuals, institutions and companies would be far less dependent on expensive mobile communications networks in conducting their digital communication. This would also be of great economic benefit.”

In addition to providing direct, measurable cost savings, the technology could, according to the researchers, result in the development of a host of new technologies just as existing WiFi has.

It could also provide direct benefits during disaster scenarios, as a means of providing updates and enabling communication.

tablet-wifi

However, the big challenge here is convincing governments that this is the right move.

Many have argued they these frequencies are common property and therefore should be made available to the public free of charge, a view that has been opposition from a number of people, including the late Nobel Prize winning economist Ronald Coase.

Coase argued that the frequencies should be auctioned off to ensure they are most effectively used, and the money used by governments to fund other services.

Others have also argued that congestion would make these lower frequency networks unworkable, however Weber and his colleague Jens Elsner argue that it is possible to avoid such congestion with the right technological approach.

Ultimately, convincing governments will be a matter of showing that long-term economic benefits greatly outstrip the short-term financial gains of an auction.

While Weber and Elsner plan to make this case at the UN World Radiocommunication Conference next year, they will no doubt struggle to get many governments onboard.

In the long run, though, those of us living in areas where auctions have gone ahead could find ourselves quite jealous of the countries that choose the super WiFi option.


Featured image courtesy of gunes t, inline images courtesy of Mr. Theklan


Elon Musk isn't so keen on flying cars

"Obviously, I like flying things, but it’s difficult to imagine the flying car becoming a scalable solution,” Musk told Bloomberg Businessweek. “If somebody doesn’t maintain their flying car, it could drop a hubcap and guillotine you.”

Source: Bloomberg

Is the woolly mammoth about to come back from extinction?

Scientists from Harvard University say they are just two years away from creating a hybrid embryo, in which mammoth traits would be programmed into an Asian elephant. The embryo would essentially grow to be an elephant with a number of mammoth traits.

Source: The Guardian

Congress is repeatedly warned NASA’s exploration plans aren’t sustainable

An expert panel has wanred that while NASA might have some of the right tools to launch and fly to destinations in deep space, it doesn't have the resources to land on the Moon, to build a base there or to fly humans to the surface of Mars.

Source: Ars Technica

IMAX unveils first virtual reality center

The IMAX VR center, which opened this week, houses 14 different pods, each containing different VR experiences that allow users to temporarily escape real life. One of the pods takes users to the desert planet of Tatooine, which will be familiar to Star Wars fans.

Source: Variety

Could Alexa be forced to testify in an Arkansas murder trial?

A trial is about to begin over the mysterious death of a former police officer at a home in Bentonville, Arkansas. The case is significant because it could help decide whether prosecutors should be allowed to subpoena a virtual assistant.

Source: VICE

Dwarf planet Ceres emerges as a place to look for life in the solar system

Pockets of carbon-based organic compounds have been found on the surface of Ceres. The identity of the tar-like minerals have't been precisely identified, but their mineral fingerprints match the make-up of kerite or asphaltite.

Source: New Scientist

Beyond biomimicry: Scientists find better-than-nature run style for six-legged robots

Researchers have found a running style for six-legged robots that significantly improves on the traditional nature-inspired method of movement.

The research, conducted by scientists at the École Polytechnique Fédérale de Lausanne (EPFL) and the University of Lausanne (UNIL) in Switzerland, found that as long as the robots are not equipped with insect-like adhesive pads, it is faster for them to move with only two legs on the ground at any given time.

Robotics has in the past few years made heavy use of biomimicry – the practice of mimicking natural systems – resulting in six-legged robots being designed to move like insects. In nature, insects use what is known as a tripod gait, where they have three legs on the ground at a time, so it had been assumed that this was the most efficient way for similarly legged robots to move.

However, by undertaking a series of computer simulations, tests on robots and experiments on Drosophila melanogaster – better known as the common fruit fly – the scientists found that the two-legged approach, which they have dubbed the bipod gait, results in faster and more efficient movement.

The core goal of the research, which is published today in the journal Nature Communications, was to confirm whether the long-held assumption that a tripod gait was best was indeed correct.

“We wanted to determine why insects use a tripod gait and identify whether it is, indeed, the fastest way for six-legged animals and robots to walk,” said Pavan Ramdya, study co-lead and corresponding author.

Initially, this involved the use of a simulated insect model based on the common fruit fly and an algorithm designed to mimic different evolutionary stages. This algorithm simulated different potential gaits to create a shortlist of those that it deemed to be the fastest.

This, however, shed light on why insects have a tripod gait – and why it may not be the best option for robots. The simulations showed that the traditional tripod gait works in combination with the adhesive pad found on the ends of insects’ legs to make climbing over vertical surfaces such as rocks easier and quicker.

Robots, however, are typically designed to walk along flat surfaces, and so the benefits of such a gait are lost.

“Our findings support the idea that insects use a tripod gait to most effectively walk on surfaces in three dimensions, and because their legs have adhesive properties. This confirms a long-standing biological hypothesis,” said Ramdya. “Ground robots should therefore break free from only using the tripod gait”.

Study co-lead authors Robin Thandiackal (left) and Pavan Ramdya with the six-legged robot used in the research. Images courtesy of EPFL/Alain Herzog

To for always corroborate the simulation’s findings, the researchers built a six-legged robot that could move either with a bipod or tripod gait, and which quickly confirmed the research by being faster when moving with just two legs on the ground at once.

However, they went further by confirming that the adhesive pads were in fact playing a role in the insect’s tripod movement.

They did this by equipping the fruit flies with tiny polymer boots that would cover the adhesive pads, and so remove their role in the way the insects moved. The flies’ responses confirms their theory: they began moving with a bipod-like gate rather than their conventional tripod-style movement.

“This result shows that, unlike most robots, animals can adapt to find new ways of walking under new circumstances,” said study co-lead author Robin Thandiackal.

As bizarre as the research sounds, it provides valuable new insights both for roboticists and biologists, and could lead to a new standard in the way that six legged robots are designed to move.

“There is a natural dialogue between robotics and biology: Many robot designers are inspired by nature and biologists can use robots to better understand the behavior of animal species,” added Thandiackal. “We believe that our work represents an important contribution to the study of animal and robotic locomotion.”