Autonomous cars and man’s future: The road ahead

With autonomous, self-driving cars likely to be commonplace by around 2025, these vehicles will change our roads, our relationship with our cars and society at large. Buckle up, a revolution is coming!

It’s no dramatic hyperbole to suggest that the automotive industry is destined to change more in the next 20 years than it has in the last 100. For a century, cars have consisted of a reasonably simple combination of four wheels, engine, steering system and pilot. Human and mechanics.

But the introduction of GPS technology alongside infrared and radar scanning, high definition cameras and, most importantly, the processing tech to stitch it all together has resulted in a truly disruptive game changer: the autonomous car.

mercedes-driverless-1Google, for instance, has chalked up over 700,000 autonomous miles in their (totally coincidentally) smiley faced, unthreatening driverless car, and this January Audi made a big fuss about driving the 569 miles from San Francisco to this year’s CES tech show in Las Vegas in an autonomous A7.

Volvo are running a scheme where 100 new owners will drive 50km of roads around Gothenburg autonomously in their new XC90s. Every automotive company right now is planning for the inevitable, in various stages of urgency.

The consensus – and there really is more heat generated around this issue than light – is that 2025 will most likely be when autonomous vehicles reach critical mass, sharing the road with human piloted vehicles.

However, as the most highly regulated industry on the planet, it won’t be the automobile manufacturers who will dictate the schedule, or even consumers, but the world’s governments. And right now they are in no hurry to direct resources into figuring out new driving laws.

Or the mind-boggling cost of overhauling our entire road system, traffic management and signposting. Or insurance regulations. Or driving tests. Or road tax. Or liability issues. Or…

Unexpected dangers of a driverless world

But suppose, for a minute, we live in a world of 100% fully automated cars, where human involvement is defunct. What will this world look like?

It won’t be the automobile manufacturers who will dictate the schedule, or even consumers, but the world’s governments

Well, first and foremost, it’s a much safer place to be. Road death is the eighth leading cause of death on the planet, with between 90% and 95% of car accidents the fault of human error. The economic cost of road accidents is estimated to be around $277bn in 2013.

So let’s do some fag packet maths, looking, logically at an industrialised western country like the UK. In 2013 there were 1,713 reported road traffic fatalities in the UK – the lowest since records began. (See! Cars are getting safer.) So allowing for the 5% of non-human error fatalities, that’s 1,627 fewer deaths on the road and virtually no injuries caused by accidents. Which is nothing short of terrific.

Great, right? Well, not if you’re a transplant ward in a hospital, and you rely on car accidents for your organs.

In Boston, for instance, 33 of their 267 organ donors were the result of car accidents. And if that still seems low, there were 105 organs harvested for transplant from those, amazingly generous people.

But where there’s tragedy, there’s opportunity. Indeed, Bre Pettis, founder and CEO of the 3D printing company Makerbot told Fortune that the process of 3D printing organs will have to come of age as a direct result of this shortfall in organ donations.

“We have this huge problem that we sort of don’t talk about, that people die all the time from car accidents,” says Pettis. “It’s kind of insane. But the most interesting thing is, if we can reduce accidents and deaths, then we actually have a whole other problem on our hands of, ‘Where do we get organs?’ I don’t think we’ll actually be printing organs until we solve the self-driving car issue.”

Designing the driverless city

City design will change enormously, even just in the short term. With great swathes of city real estate covered in car parks, self parking cars can cut down on that dramatically.

Without pesky humans parking selfishly, they can ease themselves into tiny spaces with just centimetres to spare. This frees up an enormous swathe of real estate that could be dug up and turned into parks, public spaces and real estate. Okay, mostly real estate.

That’s if cars need to be parked at all. The existence of car parks is based on the assumption that people own cars, or that cars will still remain parked for the current 95% of their lives that they lie dormant, as is the current situation.

Without pesky humans parking selfishly, they can ease themselves into tiny spaces with just centimetres to spare

Speeding fines? Thing of the past. Parking fines? Gone. Going through red lights? Well, there’ll be no need for traffic lights, signs or any other road based paraphernalia. Cars will all be interlinked on a terrifying global network, passing safety and orderly at junctions in an “After you. No, after you”-dance of software-driven politeness. This, of course, means none of that revenue going into the gaping maw of local council coffers.

“Great! Bugger them!” You say. Well, no. A huge amount of this revenue is invested into transport infrastructure and road maintenance. That revenue will have to be levied somewhere and somehow. See also fuel duty and car tax, also on the route of the dodo.

An RAC report estimated that in calendar year 2012, £24.78bn was raised in Fuel Duty and £5.87bn in VED (Vehicle Excise Duty, otherwise known as car tax) in the UK.

This totaled £30.65bn ($47.51bn), which will have to be recouped somewhere. We want to use the roads. They have to be paid for.

Fuel savings will be immense. Autonomous cars drive consistently and economically, without man’s strange insistence of moving one, righteous, car up the queue by overtaking, and aggressively lane-changing.

Morgan Stanley projected autonomous cars could save the US $170bn in lower fuel costs, and another $138bn in congestion avoidance. And that’s just fossil fuels. Which could also be a thing of the past.

Rise of the renewable car

A glance at one of the most disruptive entrepreneurs on the planet – Elon Musk – provides an indication of the future of automobile power, and it’s clean and renewable.

With the release of Tesla’s home battery, linked to a solar charger, his vision is to power cars, free and cleanly, via solar power stored in a highly capacity battery in your home.

And that’s just scratching the surface of electric power. Another option to charge your car is wireless induction charging – a primary coil is ferreted away in your garage floor, a secondary coil is incorporated into the floor of the car, and an alternating magnetic field charges the battery.

Eventually roads will be embedded with these chargers, with motorways actually juicing the car up as you use them.

Meanwhile, huge, flowery solar panel pavilions are being developed for cars, which unpack out of the boot, unfurl while they’re parked and juice them where they stand.

Another option is putting lights onto the roofs of cars which charge during the day and replace street lamps at night. What a concept!

Self-piloted cars will also be enormously empowering for sectors of society traditionally challenged by mobility issues. The disabled, old and blind, for instance, will be able to get anywhere, giving unprecedented freedom.

Drink-driving only exists while driving exists. And contrary to long-held beliefs of autonomous cars driving like nanas, with fewer accidents, and computer-making decisions limited only by physics and the decision-making speed of silicon, speed limits could be raised to what today would be considered insane heights.

Liability in the world of the self-driving car

The insurance industry is, as you’d imagine, watching developments with an arched eyebrow. And again, it’s not what you’d think.

Personal insurance will mostly likely become defunct, because as the car takes responsibility for safety, liability will shift to the manufacturers themselves, with the ABI – the Association of British Insurers telling Factor: “The key change – and the potential shift to product liability – comes when the driver is not expected to oversee or monitor the vehicle and when they have ceded full driving responsibility to the car itself.

The insurance industry is, as you’d imagine, watching developments with an arched eyebrow

“Our initial view is that if a system fails on a fully autonomous vehicle causing it to crash, liability would rest with the vehicle or system manufacturer. This potential shift in liability would only occur when a driver has actively given complete control to the vehicle and has no option to intervene.

“So whether or not there is a complete shift in liability from the driver to the vehicle is likely to depend on whether there is a clear option for the driver to intervene.”

But if we no longer buy cars, how can a manufacturer generate enough money to even cover this liability? Grey waters, indeed.

Driverless cars on the commute

Our interactions with cars will change forever. Do you commute? Well congestion will be eliminated.

Paul Godsmark, CAVCOE’s chief technology officer of the Canadian Automated Vehicles Centre Of Excellence told the Driverless Transportation website that just a step change in autonomous vehicle sharing from the current 1.2 people to 1.8, a 50% increase, would “remove most congestion from most cities. That’s the big win for autonomous vehicles.”

Those who still commute will claim back an average of 50 minutes a day in their cars. Where you’d be chewing the steering wheel or headbanging to Bohemian Rhapsody on the radio, now you can work, read, send emails, even work out.

Images courtesy of Mercedes-Benz

Images courtesy of Mercedes-Benz

With space in cars totally freed up – most design constraints like windscreens, safety pillars, number of doors etc. are based around a human driver – why wouldn’t you stick an exercise bike or a treadmill in your car? Good news for your waistband, not so much for drive-time DJs.

‘Sleeper cars’ will become available for long journeys where you’ll simply set off at night, tuck yourself into the incorporated bed, with blacked-out windows if there are windows at all, and wake up right outside your destination, be it Land’s End to John O’Groats, or a cross-Europe trip.

Automation driving job losses

Freight will be completely automated, putting every single lorry driver out of work. Deliveries will be automated, using the highways at night when there’s no congestion and economies of scale can be greater, without pesky regulations forcing weak-bodied professional drivers to take breaks.

If you drive for a living right now, can we politely suggest starting to look for a new vocation?

Pizza deliveries: automated. All deliveries: automated. If you drive for a living right now, can we politely suggest starting to look for a new vocation?

Indeed, individual car ownership with almost certainly wither and die. As autonomous cars become less an expression of your personality, bound by useage, design, handling and power and more an amorphous, vanilla everycar, there’ll be increasingly less reason to own one.

Even now, Millennials are far more interested in investing in the latest smartphone, tablet or wearable than anchoring themselves to five years’ more debt to purchase a car they rarely use, have little interest in and are taxed up the wazoo to keep.

We’ll change our entire relationship with the automobile, from something intensely personal into a commodity like a toothbrush or a saucepan.

Tim Dant, retired professor of sociology at Lancaster University told Factor: “The driverless car will change the intimate relationship that has developed during the 20th century between the user and their automobile.

“No longer will the embodied control over the device, the selection of route and manner of driving that makes it ‘mine’, be an expression of personality and identity. Instead it will be an autonomous machine that does the user’s bidding in its own systematised way.”

“Traffic congestion and ever-stricter controls over speed, parking and manoeuvring have already reduced the number of people who are excited about driving and the standardisation of design and functionality has reduced the consumer’s pleasure in choosing the right car for them,” Dant continues.

“What is more, in an increasingly privatised society the interaction between drivers on the road is a mode of ‘being in public’ that will disappear with the driverless car. It will of course make it much easier to ‘go by car’, but much more important will be the economic and social impact of the loss of skilled jobs – taxi drivers, bus drivers and lorry drivers for example – as business realises that a driverless vehicle can be operated at all hours with less risk and less cost.”

Privacy in the driverless world

Rather than own a vehicle, you’ll most likely whip out your smartphone and call an automated car, just like we would an Uber taxi today. Prod your destination into the app and off you’ll go, automatically billed at the end.

Sounds great, again? Hold up. This has severe implications to your freedom of information.

Planning to commit a crime? Don’t travel there or back in an autonomous car

With all cars packing GPS and your starting point, destination and current position all tied to an app, the provider of that app, and by association the government and police, can and will have a record of your position at every second of your journey.

Planning to commit a crime? Don’t travel there or back in an autonomous car.

The automobile changed the world, becoming a 20th century utopian ideal, delivering freedom and independence. Autonomous driving will turn the car into a commodity, a simple, smart, human-replacing means to an end, and our society is going to be feeling the impact for decades. Exciting times.

Researchers discover remains of “Triassic Jaws” who dominated the seas after Earth’s most severe mass extinction event

Researchers have discovered the fossil remains of an unknown large predatory fish called Birgeria: an approximately 1.8-meter-long primitive bony fish with long jaws and sharp teeth that swallowed its prey whole.

Swiss and US researchers led by the Paleontological Institute and Museum of the University of Zurich say the Birgeria dominated the sea that once covered present-day Nevada one million years after the mass extinction.

Its period of dominance began following “the most catastrophic mass extinction on Earth”, which took place about 252 million years ago – at the boundary between the Permian and Triassic geological periods.

Image courtesy of UZH. Featured image courtesy of Nadine Bösch

Up to 90% of the marine species of that time were annihilated, and before the discovery of the Birgeria, palaeontologists had assumed that the first predators at the top of the food chain did not appear until the Middle Triassic epoch about 247 to 235 million years ago.

“The surprising find from Elko County in northeastern Nevada is one of the most completely preserved vertebrate remains from this time period ever discovered in the United States,” emphasises Carlo Romano, lead author of the study.

Although, species of Birgeria existed worldwide. The most recent discovery belongs to a previously unknown species called Birgeria Americana, and is the earliest example of a large-sized Birgeria species, about one and a half times longer than geologically older relatives.

The researchers say the discovery of Birgeria is proof that food chains recovered quicker than previously thought from Earth’s most devastating mass extinction event.

According to earlier studies, marine food chains were shortened after the mass extinction event and recovered only slowly and stepwise.

However, finds such as the newly discovered Birgeria species and the fossils of other vertebrates now show that so-called apex predators (animals at the very top of the food chain) already lived early after the mass extinction.

“The vertebrates from Nevada show that previous interpretations of past biotic crises and associated global changes were too simplistic,” said Romano.

Revolutionary DNA sunscreen gives better protection the longer its worn

Researchers have developed a ground-breaking sunscreen made of DNA that offers significant improvements over conventional versions.

Unlike current sunscreens, which need to be reapplied regularly to remain effective, the DNA sunscreen improves over time, offering greater protection the longer it is exposed to the sun.

In addition, it also keeps the skin hydrated, meaning it could also be beneficial as a treatment for wounds in extreme or adverse environments.

Developed by researchers from Binghamton University, State University of New York, the innovative sunscreen could prove essential as temperatures climb and many are increasingly at risk of conditions caused by excessive UV exposure, such as skin cancer.

“Ultraviolet (UV) light can actually damage DNA, and that’s not good for the skin,” said Guy German, assistant professor of biomedical engineering at Binghamton University.

“We thought, let’s flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin.”

The DNA sunscreen has the potential to become a standard, significantly improving the safety of spending time in the sun

The research, which is published today in the journal Scientific Reports, involved the development of thin crystalline DNA films.

These films are transparent in appearance, but able to absorb UV light; when the researchers exposed the film to UV light, they found that its absorption rate improved, meaning the more UV is was exposed to, the more it absorbed.

“If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen,” said German.

The film will no doubt attract the attention of sunscreen manufacturers, who will likely be keen to commercialise such a promising product. However, the researchers have not said if there is any interest as yet, and if there is any clear timeline to it becoming a commercial product.

 

The film’s properties are not just limited to sun protection, however. The DNA film can also store water at a far greater rate than conventional skin, limiting water evaporation and increasing the skin’s hydration.

As a result, the film is also being explored as a wound covering, as it would allow the wound to be protected from the sun, keep it moist – an important factor for improved healing – and allow the wound to be monitored without needing to remove the dressing.

“Not only do we think this might have applications for sunscreen and moisturizers directly, but if it’s optically transparent and prevents tissue damage from the sun and it’s good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments,” said German.