Brain-Computer Interfaces: The video game controllers of the future

With virtual reality now looking distinctly normal, brain-computer interfaces are look set to become the futuristic tech on the gaming horizon. We discover where the technology is at now, and how it could transform the way we play in the future

When it comes to brain-computer interfaces (BCI) and their use in video games, it can be hard to separate fiction from reality. Valve legend Gabe Newell has confirmed he is researching the technology, and in the latest series of Black Mirror Charlie Brooker painted a terrifying portrayal of how BCI tech could develop. While it may seem far-fetched, however, here and now the technology is already proving its worth.

While not yet really an option for consumer gaming, BCI games are already being used for a host of different health-related projects, creating a whole new way of thinking about how we treat a variety of conditions.

But as time marches on, BCI could have a transformative impact on the world of video games.

“This technology has really commoditised recently. Before that, brain imaging wasn’t realistic unless you were willing to spend many thousands or even millions of dollars,” explains Chris Foster, a researcher at the University of Victoria, Canada. “Today we have devices like the OpenBCI, Emotiv, and the Muse which are affordable for both developers and consumers. That makes the idea of using it for a video game much more realistic.”

The healthy option

When it comes to applications for both invasive and non-invasive brain-computer interfaces, healthcare currently remains king. But what exactly this entails varies wildly by device.

Image courtesy of the US Army

On the invasive side are technologies such as Synapse, a device developed by Nexeon MedSystems that is implanted in the chest and connected to wires running into the brain. Designed to stimulate precise parts of the brain with electricity when paired with a game, it has already been used to treat conditions such as Parkinson’s.

BCI technology is a fairly common solution to the condition, but Synapse takes things a step further.

“This technology is different from the others because it allows us to record what is called local field potentials: the brain activity,” says Will Rosellini, chairman and CEO of Nexeon. “So we think that we can stimulate to alleviate, but we can also record and get a biomarker for how the device is performing.”

In order to make full use of this potential, the company is developing a software suite that will allow greater disease management for users of the device.

“So gamification of rehab, for example, is something that we’re looking at; can we make taking their medication more fun to drive compliance?” asks Rosellini.

But Synapse is not the only BCI technology that Rosellini is involved with. Through his second company, MicroTransponder, he has developed a vagus nerve stimulator, a technology that stimulates a key nerve in the neck to assist with both physical and behavioural therapies.

And once again, pairing the device with a game experience is vital to its success.

DARPA is hoping to extinguish those memories faster by giving soldiers a vagus nerve stimulator and having them play the video game Bravemind

“We are working with a program where they want to link the stimulation with a virtual reality construct, so Skip Rizzo at USC made a program called Bravemind,” explains Rosellini. “Bravemind is a virtual reality video game where you get Afghanistan, Iraq and Vietnam vets to be immersed in scenes that they control, and by exposing them to the videogame you can complete a delinking of the emotions with the memory, and that has been shown to be important in post-traumatic stress disorder.

“DARPA is hoping to extinguish those memories faster by giving soldiers a vagus nerve stimulator and having them play the video game Bravemind to extinguish their memories faster. So that’s a big, $8 million proposal they started last year.”

In addition, Rosellini says that the technology could be used to help rehabilitate stroke sufferers and relieve addiction to drugs such as heroin. However, the fact remains that the technology is highly invasive, meaning its use is likely to remain limited to conditions that are severely life-altering.

Interfaces without implants

While invasive BCI remains the best solution for some severe conditions, technologies are emerging that combine non-invasive brain computer interfaces with video games for more low-key therapy.

A key example of this is Harvard-incubated BrainCo’s Focus 1, a neurofeedback device that is worn like a headband to improve focus by training certain brainwave frequencies.

“The Focus 1 itself is a headband, it has two electrodes on it on the forehead and one behind the ear. It reads alpha, beta and in some of our iterations also low theta waves,” explains BrainCo game developer Jo Wylie. “It takes them, it runs them through an algorithm based on neurofeedback that we’ve developed and it outputs pretty much a very understandable, passable 0 to 100 scale that we just call the attention level.”

Image and featured image courtesy of BrainCo

There are an array of potential applications for device, which is currently being prepared for clinical trials, but at present BrainCo is focusing on developing it as a therapeutic product for children and teenagers with ADHD. The idea is that the users play games made for the device, which help them to improve their concentration and focus.

One such game that has been developed for the system is Focus Oasis, an Animal Crossing-style mobile game that focuses on providing a fun, positive experience that rewards the player for greater focus.

“You drop into this oasis, this area which only you can access and which has a collection of characters in it. So the idea is you walk around, you explore this nice rich environment and each character you meet has a different request for you. Is one character asks: can you help me do my fishing? Somebody else is like: I’m trying to get all these flowers to bloom, can you help me make all the flowers and the frogs come out?”

The idea behind this, says Wylie, is that the player sees a physical improvement in the world as they focus more; a reward for their improved concentration.

“I really didn’t want to just make more homework for the kids, so I wanted to create something that gives them a sense of this is my space and it’s just for me,” she says. “I’m doing this because it feels good and not because I’ve been sat down with it.”

Getting into games

However, while BrainCo is currently only used as a therapy device, it could also have significant potential as a new form of gaming device.

“In the long run I really, really want to make it a purely entertainment device, which is available to anyone playing any type of game, and BrainCo is slowly going there,” says Wylie.

There is definitely a horror application of this device where as you’re walking around, this device will be able to read when you are most scared

That’s not to say that the technology wouldn’t be applicable to gaming in its current state. While the Focus 1 only touches on the potential of BCI, what it does do, it does well.

“I’d love to do a racing game where you’re just racing each other with how focused you are – that could be a lot of fun!” laughs Wylie. “I could go and make it now. We have an attention level: zero is stopped, 100 is 100 miles an hour, it would be relatively easy to code, but it doesn’t fit into what we kind of want to do with the BrainCo device now at all.”

Nevertheless, there will be chances for other developers to use the technology for these types of games before long. While the device does not yet have a set date for commercial availability, the company is planning to put together an SDK that will allow third-party game developers to create compatible experiences for it. These could in theory take the form of a host of different types of game, but all will provide rewards or responses purely within the gaming experience.

“The training technique, there’s no feedback – it doesn’t buzz your head like some neural feedback devices do, it’s purely through gamification: when you’re in a good place your game rewards you,” says Wylie. “All of the game applications will help the brain, will train the brain, but in the long run we’d love to see the SDK used just as a gaming device, or as a training device.”

Some games, of course, will be better suited to the headband than others. Wylie believes walking simulators and continuous runners are most likely to be well suited to the Focus 1, but there are other genres that could be dramatically improved by the addition of the BCI device, particularly in combination with virtual reality.

“There is definitely a horror application of this device where as you’re walking around, this device will be able to read when you are most scared, so the horror game that sees that when you see spiders you become more scared, so as the game goes on you see more and more spiders, that sort of thing,” she explains.

“So horror games that can learn from you. We’ve been talking about that for a while: once we get an SDK we’re specifically going to be reaching out to horror companies because we think that this could be really, really cool.”

If that sounds a little Black Mirror for your taste, however, the technology does also allow for far more restful gaming experiences.

“Personally I’d love to make this game where you’re in a world, in VR, and just imagine you’re sat on a field and all around you as you concentrate all the flowers open,” she says. “And it’s this immersive experience where you’re literally just sat in a place or stood walking around an area, and you’re controlling it and making it light up, all the colours changing and everything happening as you focus. I think it could be a really amazing artistic image.”

The outer limits

At present, BCI devices – and particularly those that are suitable for consumers – are relatively basic. But in time they are likely to develop into far more sophisticated pieces of technology.

However, exactly how sophisticated this form of non-invasive device could become remains a matter of contention.

We’re trying to predict what are called ‘word vectors’ from an EEG signal

“I don’t think BCI – until we’ve got to a point where we’ve got things in our brains, which is not something that attracts me – we’re not going to get directional BCI where you could think ‘lights’ and the lights come on – not unless you have some pretty, pretty intense, deep-in stuff, “says Wylie.

“Honestly I might be wrong on the directional thing, but from what I’ve seen I don’t think we’re going to be able to pick up words.”

However, Foster is working on a research project that could in time to see something almost of this nature become a reality.

“We’re trying to predict what are called ‘word vectors’ from an EEG signal. The user could think of a noun, such as the word ‘cat’, and we attempt to determine information about that word such as ‘Is it alive?’ or ‘Is it a kitchen item?’ based on the EEG signals,” he says.

“It has been shown this can be done with high-end brain imaging such as fMRI, but these machines are extraordinarily expensive. We’re trying to see if this can be generalized to cheaper commodity EEG hardware.”

Foster says that he will better know whether the concept is likely to work by April, but if it does, it could be hugely impactful for the use of BCI.

“This would allow the collection of far more data and be more explorable for a lower price point,” he says. “This can help us understand how the human brain processes language and in the far future potentially make these sort of brain-computer interfaces more practical and effective.”

Nevertheless, even if non-invasive BCI devices are never able to truly detect words, Wylie believes they could provide a very clear picture of a wearer’s feelings, which in turn could be used to brilliant effect in games.

“I think the peak is going to be in emotional reactions,” she says. “Being able to tell exactly when someone is happy, is sad, is scared, all that type of thing.”

Scientists implant device to boost human memory

Scientists have enhanced human memory for the first time with a “memory prosthesis” brain implant. The team behind the device say it can boost performance on memory tests by up to 30%, and a similar approach may work for enhancing other brain skills, such as vision or movement.

Source: New Scientist

Astronomers discover Earth-sized world 11 light years away

A planet, Ross 128 b, has been discovered in orbit around a red dwarf star just 11 light years from the Sun. The planet is 35% more massive than Earth, and it likely exists at the edge of the small, relatively faint star's habitable zone even though it is 20 times closer to its star than the Earth is to the Sun.

Source: Ars Technica

An algorithm can see what you've learned before going to sleep

Researcher fed the brain activity from sleeping subjects to a machine learning algorithm, and it was able to determine what the subject had learned before falling asleep. In other words, an algorithm was able to effectively ‘read’ electrical activity from sleeping brains and determine what they were memorising as a result.

Source: Motherboard

Elon Musk unveils Tesla Truck and Tesla Roadster

Elon Musk has unveiled the long-anticipated 'Tesla Semi' – the company's first electric articulated lorry. The vehicle has a range of 500 miles on a single charge, and will go into production in 2019. Unexpectedly, Tesla also revealed a new Roadster, which will have a range of close to 1,000km (620 miles) on a single charge and will do 0-100mph in 4.2 seconds.

Source: BBC

Arrivo plans to build 200mph hyperloop-lite track

Arrivo, the company founded by former Hyperloop One engineer Brogan BamBrogan, has announced a partnership with Colorado’s Department of Transportation. Arrivo will now build a magnetised track to transport existing vehicles, cargo sleds and specially designed vehicles alongside preexisting freeways at 200mph in the city of Denver.

Source: The Verge

Boston Dynamics' Atlas robot can now do backflips

It's been a busy week for Boston Dynamics, first the company revealed it SpotMini robot dog was getting an upgrade, and now the company has shared a video of its Atlas humanoid robot leaping from platforms and doing a backflip. It seems like an obvious thing to say, but it's not easy to make a robot do a backflip, so how Boston Dynamics has managed it is anyone's guess.

Source: WIRED

The all new Factor Magazine is here – your guide to how today, tomorrow and beyond are being shaped

Guess who’s back, back again.

It’s been a few months, but Factor has returned with a bigger and better format, bringing the same future news and discussion, but on a platform that you can read on any device.

We’ve been working towards this for a long, long time: this is how we’ve always wanted the magazine to look, and we’re so happy to share this with you. It can be viewed on any web browser, on anything from a mobile to a monster PC, and if you’re on a desktop or laptop, click the button in the bottom right-hand corner for the ultimate shiny reading experience. A digital magazine has never looked this good. Probably.

Unfortunately that means no more iPad app, but as you can easily read the magazine from an iPad web browser, we hope you’ll agree that what we’ve gained is so much better than what’s been lost.

So anyway, here it is: the Winter 2017 issue of Factor, the first issue of the quarterly version of the magazine.

In case any of you are worrying about us publishing the magazine quarterly, trust us you don’t need to. We’ve produced the biggest issue of Factor ever, so packed with futuristic awesomeness, that we’ve had to divide it into three sections: Today, Tomorrow and Beyond.

Today deals with the futuristic present, as much of what we think of as ‘the future’ already exists today. We look at how humanoid robots are being employed as co-workers, hear from the legendary Richard Stallman about the vanishing state of privacy and discover how automation is already taking jobs. Plus, we take a light hearted look at the futuristic world of Mr Tesla, Elon Musk, and provide our festive present suggestions in a bumper futuristic gift guide.

Moving on to Tomorrow, and it’s all about the world of the next few decades, as technologies that are in development now reach fruition and seep into our everyday lives. We consider how flying cars are inching towards reality, with a look at both Lilium and the newly announced UberAir, and find out how driverless delivery may be the first true instance of the self-driving future.  Plus, we also look at the Christmas dinners of the future, because why the hell not.

Finally, in Beyond we look at the way-out future that many of us probably won’t live to see, but is supremely cool to think about. We ask leading futurists to predict what’s in store in the 22nd century – not the most positive of pictures, unfortunately – and consider what jobs will remain in a post-automation world. Plus, we look at the potential first homes of the human race beyond the solar system, and check out how asteroid mining is set to shape off-earth development.

Take a look, and if you like what you see and read, please share the magazine with your friends, or tell us what you think. This is a completely free magazine, with not an ad in sight, so it’s always good to know that it’s worth the effort.