NASA’S Don Pettit on experimenting aboard the International Space Station

Out in space where the rules are different, scientists frequently find themselves on the very frontier of knowledge. We hear the thoughts of NASA astronaut, scientist and low-Earth orbit inventor Don Pettit on the excitement and future of researching in the unknown

Dr Don Pettit is one of NASA’s great science pioneers. A chemical engineer, he is the veteran of multiple missions, including two long-duration stays aboard the International Space Station (ISS), and a 6-week meteorite-hunting expedition to Antarctica.

Back in 2002 when he was science officer on Expedition 6, he hosted the now gloriously retro science series Saturday Morning Science, where he conducted an array of experiments in the ISS’ microgravity.

He is also known as an inventor, having built a barn door tracker out of ISS parts on the same mission. The device compensates for the ISS’ movement relative to Earth, allowing for the crisp images of the world below we now get from orbiting astronauts. Plus he invented the zero-g coffee cup, which allows astronauts to enjoy a caffeinated pick-me-up without the need for a straw.

Pettit is above all, however, a frontrunner to a horde of future researchers and scientists who will expand our knowledge of science in microgravity, which, as he pointed out when I spoke to him at the European Space Agency’s event Space for Inspiration, currently only scratches the surface of what’s possible.

You’ve spent a total of 370 days living and working onboard the International Space Station. What’s it like to be up there?

It’s an incredible experience. You’re going into a frontier environment that we have no innate intuition about, and so every day you’re learning new things. Not everything is wonderful, but the environment is wonderful.

What excites you most about the potential of research in space?

It’s not one specific factoid that we are learning, it’s the whole avenue of human beings expanding into a frontier where our normal intuition from life on Earth does not apply, and things that are just unimaginable happen.

Don Pettit1

Images courtesy of NASA Johnson

You will make an observation and we will have insufficient knowledge to predict what was going to happen, but after we make the observation we can use our pre-existing knowledge to explain what happens. And sometimes our pre-existing knowledge is insufficient, and that means you’re truly working in a frontier situation.

That’s the exciting part of going into space. It’s not any single experiment; it’s not just looking at Earth; it’s not the feeling of weightlessness; it’s the idea that you are truly doing exploration, exploration that only about 550 people have ever done, have ever gone into space out of the 7 billion people on this planet.

That’s something that we need to change right there; we need to figure out how to do the engineering and make machines so that we can get more people going into space. That’s going to dramatically increase the rate of our knowledge, our discovery, and expansion into the solar system.

Do you anticipate a rapid expansion of knowledge as the private space industry expands?

Yeah. It’s bound to happen. Take the discovery of the laser. At first it was a large complicated piece of equipment you could only keep running in a laboratory, and it was highlighted as being a discovery waiting for an application. Because it was a real neat piece of physics, but nobody knew what to use it for.

It took literally 30 years before lasers started to become useful, and now you can hardly go anywhere without a laser being somewhere in your life. You’ve got a laser in your smartphone there; you’ve got lasers in the grocery store; lasers are all around us and lasers are a fundamental part of our life now.

Space is kind of like that: it’s slow to take off because of access, but just like lasers were slow to take off because they were large and bulky and complicated, it will be inevitable that human beings will expand into space both for continued exploration and for commercial ventures.

There’s also talk of the ISS being privatised – do you anticipate that creating more opportunities for new experiments?

Experimentation is what human beings are good at doing

Of course, and experimentation is what human beings are good at doing. It doesn’t matter whether it’s a government-run programme or a commercially-run programme, they’re all good and we need both. The kinds of questions that a government research lab asks and does research on are typically different than the kind of questions that private industry would do, and they go hand-in-hand.

Are there any untapped research areas that you would like to see prioritised in future ISS experiments?

There are areas that are rich for potential discovery. Fluid mechanics is one; dealing with the flows involving gases and liquids along with free surface interfaces.

These are complex and difficult to deal with, and a classic example of this is a toilet: how do you make a toilet that works? We’ve got toilets on the space station but they’re always breaking down, and it’s in parts dealing with a mixture of air and liquids and bubbles and droplets and all these things moving together and how do you deal with that?

So that’s one field. Another field is anything dealing with the life sciences. If you look at life evolving on Earth – temperatures, pressures, chemical compositions – these things have swung all over, but the magnitude of gravity has remained constant for billions of years.

Ever since Earth became a planet its gravity has basically been constant; life has always known constant gravity and now we can take life organisms including ourselves into an environment where we change the magnitude of gravity by a factor of a million.

don-pettit2

That’s what microgravity is: you change it by a factor of a million. You change almost any other environmental factor by a million and see how long it’ll take your nematodes to curl up and die. The fact that we can change the magnitude of gravitational force by a factor of one million and life still continues on, that in itself is an amazing discovery.

But then we’re finding there are all kinds of subtle things that happened with living organisms when we take them into a microgravity environment and likewise tertiary effects on human physiology. And so this is another field that is ripe for discovery.

How do much do we currently know about humans’ response to microgravity situations?

We know a lot about how the human body responds, but we don’t know why.

I like the analogy of sailors getting scurvy when they go on transoceanic expeditions in the 14th, 15th, 16th centuries – thousands and thousands of sailors died from something that now grade school kids know the solution to. But the concepts of vitamins and diets hadn’t even been thought of [back then]; that there were small quantities of complex organic material that you needed by the milligram dose every day in order to maintain health, and without them you would die.

Around 1750, the Royal Navy figured out that if you suck on citrus you won’t get scurvy, and that was the empirical solution to the problem of scurvy, but they didn’t understand the fundamental basics as to what causes scurvy for another 150 years, when vitamins and their role in your diet and human health were discovered.

That’s where we are now with so many of the things we’re learning about human physiology.

Now you look at just one of the many things that happened to human beings in space environments: bone decalcification. We have an empirical remedy for that now, it’s called exercise, and we exercise for two and a half hours a day. In some respects a trip to the space station is like spending six months at health camp, because you come back stronger than you were before you launched.

This exercise preserves your bones, and the rate of bone density loss now is minuscule. So this is the equivalent of the Brits figuring out if you suck on citrus you won’t get scurvy. But we haven’t the foggiest as to what is going on with our bones in a weightless environment, what are the details of the biochemistry?

We’re working on that now, and just like vitamins and diet that allowed these nasty vitamin deficiencies to be solved for everybody on the continent that never went on a sea voyage, if we understand the fundamentals of bone density loss, everybody on the planet that doesn’t travel into space, they will benefit from this.

ftr_1612_feature-bottom

So it’s the same story of scurvy but it’s being replayed in a different venue, in a different century, with a different human malady and this story is also being repeated for eye retinal issues; the cardiovascular issues we find; the immune system deficiencies that we’re finding.

We’re finding that as all of these disease-like symptoms that are being instigated in healthy people in the middle of life simply because you go into space, and it’s going to be an amazing venue to help decipher what’s going on with these diseases for everybody on the planet.

It’s really exciting; I could talk about this stuff for hours.

For those who are keen to become future researchers in microgravity, what advice would you give on becoming an astronaut?

The secret to becoming an astronaut is: you put in an application. A limousine is not going to pull up in front of your house and men in black come out and give you a secret handshake and now you’re in the astronaut program.

The only way you will become an astronaut is to put an application in for the program and if the first time you put your application in it doesn’t work out, you can’t take no for an answer and you just keep trying, and trying and trying.

I was rejected three times. I interviewed [to become an] astronaut four times over a 13-year period and three of those times I got the ‘thank you very much’ letter, and the fourth time I got the ‘welcome to the astronaut program’ letter. You just don’t take no for an answer if it’s something you really, really want to do.

Only 6% of space enthusiasts would like to live in the first low-Earth orbit settlements

A new survey has found that only 6% of respondents would be happy to live in a proposed Equatorial Low Earth Orbit (ELEO) settlement, where humans live in a small cruise ship-like space station at a similar orbit to the ISS.

Four conditions were set for respondents to assess and while at least 30% said they agree with at least one of them, the number shrank significantly when it came to those who could accept all the conditions.

These were that the settlement itself would require permanent residence, would be no bigger than a large cruise ship, would contain no more than 500 people and would require residents to be willing to devote at least 75% of their wealth to move in.

The example settlement used in the survey is Kalpana Two, pictured, a conceptual cylindrical space habitat visualised by Brian Versteeg. Measuring 110 m x 110m it would rotate to provide simulated gravity on the “ground” and zero-gravity near the cylinder’s core where occupants can ‘fly’, and would be capable of housing 500 – 1,000 people

The study, conducted by researchers from San Jose State University (SJSU) and the FAA Office of Commercial Space Transportation (AST) sought to assess the desirability of such a settlement. Previous similar studies had suggested early space settlements would need to be significantly smaller than believed, and located far closer to Earth.

The research was conducted via an Internet survey made available to the public between 8 January 2016 and 17 June 2016. The survey, using Qualtrics software, received 1,075 responses and was distributed via an email list, social media and spac- related organisations. It should therefore be noted that the respondents are not representative of the general population: 95% actually identified as space enthusiasts.

“95% of respondents were self-described space enthusiasts and 81% were male. 70% were from North America and 20% from Europe,” the study authors Al Globus, from SJSU, and Tom Marotta, from AST, wrote in the research paper.

“This is not surprising as the authors made no attempt to select a random sample of any particular group, but rather to simply distribute the survey as widely as we could.”

Kalpana Two, the conceptual space station the survey was based on. Images courtesy of Brian Versteeg

The paper itself is rather enthusiastic about the 6% figure, pointing out that while it is a low percentage of those who responded, if considering it 6% of those who globally identify as “space enthusiasts” there are likely more than enough to fill these early settlements.  The authors also acknowledge that such a number is not all that surprising given the demands of the move.

However, while the enthusiasm and optimism is laudable, it’s worth noting that those principally willing to give up the most were small in number and tended to fall on the wealthier spectrum. So while the possibility of the project exists, it seems that, as with all commercial space projects so far, it would principally have to cater to the rich.

Moreover, when responding to the main attraction of life in space, “the most common remark was simply that it was ‘in space’ not any particular characteristic of living in space”. There seems in the responses to be a certain enthusiasm that may not hold up in the actual moment of decision.

The fact that people like the idea of living in space is no surprise; the survey however does little to assuage the realities of the situation. Enthusiasm is promising, however the main result of this survey seems to be that blind optimism is only truly backed up by vast amounts of money.

Life expectancy to break the 90-year barrier by 2030

New research has revealed that the average life expectancy is set to increase in many countries by 2030 and, in South Korea specifically, will improve so much as to exceed an average of 90 years. The study analysed long-term data on mortality and longevity trends to predict how life expectancy will change from now until 2030.

The study was led by scientists from Imperial College London in collaboration with the World Health Organization. Looking at 35 industrialised nations, the team highlighted South Korea as a peak for life expectancy; predicting expectancy from birth, they estimate that a baby girl born in South Korea in 2030 will expect to live 90.8 years, while men are expected to live to be 84.1 years.

Scientists once thought an average life expectancy of over 90 was impossible, according to Professor Majid Ezzati, lead researcher from the School of Public Health at Imperial College London:

“We repeatedly hear that improvements in human longevity are about to come to an end. Many people used to believe that 90 years is the upper limit for life expectancy, but this research suggests we will break the 90-year barrier,” he said.

“I don’t believe we’re anywhere near the upper limit of life expectancy -if there even is one.”

South Korea leads in life expectancy. Image courtesy of jedydjah. Featured image courtesy of Carey and Kacey Jordan

Ezzati explained that the high expectancy for South Korean lives was likely due to a number of factors including good nutrition in childhood, low blood pressure, low levels of smoking, good access to healthcare, and uptake of new medical knowledge and technologies. It is likely that, by 2030, South Korea will have the highest life expectancy in the world.

Elsewhere, French women and Swiss men are predicted to lead expectancies in Europe, with 88.6 years and nearly 84 years respectively. The UK is expected to average 85.3 years for women (21st in the table of countries studied) and 82.5 years for men (14th in the table).

The study included both high-income countries and emerging economies. Among the high-income countries, the US was found to have the lowest predicted life expectancy at birth. Averaging similar to Croatia and Mexico, the researchers suggested this was due to a number of factors including a lack of universal healthcare, as well as the highest child and maternal mortality rate, homicide rate and obesity among high-income countries.

A lack of universal healthcare is one of the reasons the US trails behind in life expectancy. Image courtesy of HSeverson

Notably, the research also suggests that the life expectancy gap between men and women is closing and that a large factor in increasing expectancy is due in no small part to older sections of the population living longer than before.

Such increased longevity is not without issue, however, as countries may not be prepared to support an ageing population.

“The fact that we will continue to live longer means we need to think about strengthening the health and social care systems to support an ageing population with multiple health needs,” added Ezzati.

“This is the opposite of what is being done in the era of austerity. We also need to think about whether current pension systems will support us, or if we need to consider working into later life.”