NASA’S Don Pettit on experimenting aboard the International Space Station

Out in space where the rules are different, scientists frequently find themselves on the very frontier of knowledge. We hear the thoughts of NASA astronaut, scientist and low-Earth orbit inventor Don Pettit on the excitement and future of researching in the unknown

Dr Don Pettit is one of NASA’s great science pioneers. A chemical engineer, he is the veteran of multiple missions, including two long-duration stays aboard the International Space Station (ISS), and a 6-week meteorite-hunting expedition to Antarctica.

Back in 2002 when he was science officer on Expedition 6, he hosted the now gloriously retro science series Saturday Morning Science, where he conducted an array of experiments in the ISS’ microgravity.

He is also known as an inventor, having built a barn door tracker out of ISS parts on the same mission. The device compensates for the ISS’ movement relative to Earth, allowing for the crisp images of the world below we now get from orbiting astronauts. Plus he invented the zero-g coffee cup, which allows astronauts to enjoy a caffeinated pick-me-up without the need for a straw.

Pettit is above all, however, a frontrunner to a horde of future researchers and scientists who will expand our knowledge of science in microgravity, which, as he pointed out when I spoke to him at the European Space Agency’s event Space for Inspiration, currently only scratches the surface of what’s possible.

You’ve spent a total of 370 days living and working onboard the International Space Station. What’s it like to be up there?

It’s an incredible experience. You’re going into a frontier environment that we have no innate intuition about, and so every day you’re learning new things. Not everything is wonderful, but the environment is wonderful.

What excites you most about the potential of research in space?

It’s not one specific factoid that we are learning, it’s the whole avenue of human beings expanding into a frontier where our normal intuition from life on Earth does not apply, and things that are just unimaginable happen.

Don Pettit1

Images courtesy of NASA Johnson

You will make an observation and we will have insufficient knowledge to predict what was going to happen, but after we make the observation we can use our pre-existing knowledge to explain what happens. And sometimes our pre-existing knowledge is insufficient, and that means you’re truly working in a frontier situation.

That’s the exciting part of going into space. It’s not any single experiment; it’s not just looking at Earth; it’s not the feeling of weightlessness; it’s the idea that you are truly doing exploration, exploration that only about 550 people have ever done, have ever gone into space out of the 7 billion people on this planet.

That’s something that we need to change right there; we need to figure out how to do the engineering and make machines so that we can get more people going into space. That’s going to dramatically increase the rate of our knowledge, our discovery, and expansion into the solar system.

Do you anticipate a rapid expansion of knowledge as the private space industry expands?

Yeah. It’s bound to happen. Take the discovery of the laser. At first it was a large complicated piece of equipment you could only keep running in a laboratory, and it was highlighted as being a discovery waiting for an application. Because it was a real neat piece of physics, but nobody knew what to use it for.

It took literally 30 years before lasers started to become useful, and now you can hardly go anywhere without a laser being somewhere in your life. You’ve got a laser in your smartphone there; you’ve got lasers in the grocery store; lasers are all around us and lasers are a fundamental part of our life now.

Space is kind of like that: it’s slow to take off because of access, but just like lasers were slow to take off because they were large and bulky and complicated, it will be inevitable that human beings will expand into space both for continued exploration and for commercial ventures.

There’s also talk of the ISS being privatised – do you anticipate that creating more opportunities for new experiments?

Experimentation is what human beings are good at doing

Of course, and experimentation is what human beings are good at doing. It doesn’t matter whether it’s a government-run programme or a commercially-run programme, they’re all good and we need both. The kinds of questions that a government research lab asks and does research on are typically different than the kind of questions that private industry would do, and they go hand-in-hand.

Are there any untapped research areas that you would like to see prioritised in future ISS experiments?

There are areas that are rich for potential discovery. Fluid mechanics is one; dealing with the flows involving gases and liquids along with free surface interfaces.

These are complex and difficult to deal with, and a classic example of this is a toilet: how do you make a toilet that works? We’ve got toilets on the space station but they’re always breaking down, and it’s in parts dealing with a mixture of air and liquids and bubbles and droplets and all these things moving together and how do you deal with that?

So that’s one field. Another field is anything dealing with the life sciences. If you look at life evolving on Earth – temperatures, pressures, chemical compositions – these things have swung all over, but the magnitude of gravity has remained constant for billions of years.

Ever since Earth became a planet its gravity has basically been constant; life has always known constant gravity and now we can take life organisms including ourselves into an environment where we change the magnitude of gravity by a factor of a million.


That’s what microgravity is: you change it by a factor of a million. You change almost any other environmental factor by a million and see how long it’ll take your nematodes to curl up and die. The fact that we can change the magnitude of gravitational force by a factor of one million and life still continues on, that in itself is an amazing discovery.

But then we’re finding there are all kinds of subtle things that happened with living organisms when we take them into a microgravity environment and likewise tertiary effects on human physiology. And so this is another field that is ripe for discovery.

How do much do we currently know about humans’ response to microgravity situations?

We know a lot about how the human body responds, but we don’t know why.

I like the analogy of sailors getting scurvy when they go on transoceanic expeditions in the 14th, 15th, 16th centuries – thousands and thousands of sailors died from something that now grade school kids know the solution to. But the concepts of vitamins and diets hadn’t even been thought of [back then]; that there were small quantities of complex organic material that you needed by the milligram dose every day in order to maintain health, and without them you would die.

Around 1750, the Royal Navy figured out that if you suck on citrus you won’t get scurvy, and that was the empirical solution to the problem of scurvy, but they didn’t understand the fundamental basics as to what causes scurvy for another 150 years, when vitamins and their role in your diet and human health were discovered.

That’s where we are now with so many of the things we’re learning about human physiology.

Now you look at just one of the many things that happened to human beings in space environments: bone decalcification. We have an empirical remedy for that now, it’s called exercise, and we exercise for two and a half hours a day. In some respects a trip to the space station is like spending six months at health camp, because you come back stronger than you were before you launched.

This exercise preserves your bones, and the rate of bone density loss now is minuscule. So this is the equivalent of the Brits figuring out if you suck on citrus you won’t get scurvy. But we haven’t the foggiest as to what is going on with our bones in a weightless environment, what are the details of the biochemistry?

We’re working on that now, and just like vitamins and diet that allowed these nasty vitamin deficiencies to be solved for everybody on the continent that never went on a sea voyage, if we understand the fundamentals of bone density loss, everybody on the planet that doesn’t travel into space, they will benefit from this.


So it’s the same story of scurvy but it’s being replayed in a different venue, in a different century, with a different human malady and this story is also being repeated for eye retinal issues; the cardiovascular issues we find; the immune system deficiencies that we’re finding.

We’re finding that as all of these disease-like symptoms that are being instigated in healthy people in the middle of life simply because you go into space, and it’s going to be an amazing venue to help decipher what’s going on with these diseases for everybody on the planet.

It’s really exciting; I could talk about this stuff for hours.

For those who are keen to become future researchers in microgravity, what advice would you give on becoming an astronaut?

The secret to becoming an astronaut is: you put in an application. A limousine is not going to pull up in front of your house and men in black come out and give you a secret handshake and now you’re in the astronaut program.

The only way you will become an astronaut is to put an application in for the program and if the first time you put your application in it doesn’t work out, you can’t take no for an answer and you just keep trying, and trying and trying.

I was rejected three times. I interviewed [to become an] astronaut four times over a 13-year period and three of those times I got the ‘thank you very much’ letter, and the fourth time I got the ‘welcome to the astronaut program’ letter. You just don’t take no for an answer if it’s something you really, really want to do.

XPRIZE launches contest to build remote-controlled robot avatars

Prize fund XPRIZE and All Nippon Airways are offering $10 million reward to research teas who develop tech that eliminates the need to physically travel. The initial idea is that instead of plane travel, people could use goggles, ear phones and haptic tech to control a humanoid robot and experience different locations.

Source: Tech Crunch

NASA reveals plans for huge spacecraft to blow up asteroids

NASA has revealed plans for a huge nuclear spacecraft capable of shunting or blowing up an asteroid if it was on course to wipe out life on Earth. The agency published details of its Hammer deterrent, which is an eight tonne spaceship capable of deflecting a giant space rock.

Source: The Telegraph

Sierra Leone hosts the world’s first blockchain-powered elections

Sierra Leone recorded votes in its recent election to a blockchain. The tech, anonymously stored votes in an immutable ledger, thereby offering instant access to the election results. “This is the first time a government election is using blockchain technology,” said Leonardo Gammar of Agora, the company behind the technology.

Source: Quartz

AI-powered robot shoots perfect free throws

Japanese news agency Asahi Shimbun has reported on a AI-powered robot that shoots perfect free throws in a game of basketball. The robot was training by repeating shots, up to 12 feet from the hoop, 200,000 times, and its developers said it can hit these close shots with almost perfect accuracy.

Source: Motherboard

Russia accused of engineering cyberattacks by the US

Russia has been accused of engineering a series of cyberattacks that targeted critical infrastructure in America and Europe, which could have sabotaged or shut down power plants. US officials and private security firms claim the attacks are a signal by Russia that it could disrupt the West’s critical facilities.

Google founder Larry Page unveils self-flying air taxi

A firm funded by Google founder Larry Page has unveiled an electric, self-flying air taxi that can travel at up to 180 km/h (110mph). The taxi takes off and lands vertically, and can do 100 km on a single charge. It will eventually be available to customers as a service "similar to an airline or a rideshare".

Source: BBC

World-renowned physicist Stephen Hawking has died at the age of 76. When Hawking was diagnosed with motor neurone disease aged 22, doctors predicted he would live just a few more years. But in the ensuing 54 years he married, kept working and inspired millions of people around the world. In his last few years, Hawking was outspoken of the subject of AI, and Factor got the chance to hear him speak on the subject at Web Summit 2017…

Stephen Hawking was often described as being a vocal critic of AI. Headlines were filled with predictions of doom by from scientist, but the reality was more complex.

Hawking was not convinced that AI was to become the harbinger of the end of humanity, but instead was balanced about its risks and rewards, and at a compelling talk broadcast at Web Summit, he outlined his perspectives and what the tech world can do to ensure the end results are positive.

Stephen Hawking on the potential challenges and opportunities of AI

Beginning with the potential of artificial intelligence, Hawking highlighted the potential level of sophistication that the technology could reach.

“There are many challenges and opportunities facing us at this moment, and I believe that one of the biggest of these is the advent and impact of AI for humanity,” said Hawking in the talk. “As most of you may know, I am on record as saying that I believe there is no real difference between what can be achieved by a biological brain and what can be achieved by a computer.

“Of course, there is unlimited potential for what the human mind can learn and develop. So if my reasoning is correct, it also follows that computers can, in theory, emulate human intelligence and exceed it.”

Moving onto the potential impact, he began with an optimistic tone, identifying the technology as a possible tool for health, the environment and beyond.

“We cannot predict what we might achieve when our own minds are amplified by AI. Perhaps with the tools of this new technological revolution, we will be able to undo some of the damage done to the natural world by the last one: industrialisation,” he said.

“We will aim to finally eradicate disease and poverty; every aspect of our lives will be transformed.”

However, he also acknowledged the negatives of the technology, from warfare to economic destruction.

“In short, success in creating effective AI could be the biggest event in the history of our civilisation, or the worst. We just don’t know. So we cannot know if we will be infinitely helped by AI, or ignored by it and sidelined or conceivably destroyed by it,” he said.

“Unless we learn how to prepare for – and avoid – the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers like powerful autonomous weapons or new ways for the few to oppress the many. It could bring great disruption to our economy.

“Already we have concerns that clever machines will be increasingly capable of undertaking work currently done by humans, and swiftly destroy millions of jobs. AI could develop a will of its own, a will that is in conflict with ours and which could destroy us.

“In short, the rise of powerful AI will be either the best or the worst thing ever to happen to humanity.”

In the vanguard of AI development

In 2014, Hawking and several other scientists and experts called for increased levels of research to be undertaken in the field of AI, which he acknowledged has begun to happen.

“I am very glad that someone was listening to me,” he said.

However, he argued that there is there is much to be done if we are to ensure the technology doesn’t pose a significant threat.

“To control AI and make it work for us and eliminate – as far as possible – its very real dangers, we need to employ best practice and effective management in all areas of its development,” he said. “That goes without saying, of course, that this is what every sector of the economy should incorporate into its ethos and vision, but with artificial intelligence this is vital.”

Addressing a thousands-strong crowd of tech-savvy attendees at the event, he urged them to think beyond the immediate business potential of the technology.

“Perhaps we should all stop for a moment and focus our thinking not only on making AI more capable and successful, but on maximising its societal benefit”

“Everyone here today is in the vanguard of AI development. We are the scientists. We develop an idea. But you are also the influencers: you need to make it work. Perhaps we should all stop for a moment and focus our thinking not only on making AI more capable and successful, but on maximising its societal benefit,” he said. “Our AI systems must do what we want them to do, for the benefit of humanity.”

In particular he raised the importance of working across different fields.

“Interdisciplinary research can be a way forward, ranging from economics and law to computer security, formal methods and, of course, various branches of AI itself,” he said.

“Such considerations motivated the American Association for Artificial Intelligence Presidential Panel on Long-Term AI Futures, which up until recently had focused largely on techniques that are neutral with respect to purpose.”

He also gave the example of calls at the start of 2017 by Members of the European Parliament (MEPs) the introduction of liability rules around AI and robotics.

“MEPs called for more comprehensive robot rules in a new draft report concerning the rules on robotics, and citing the development of AI as one of the most prominent technological trends of our century,” he summarised.

“The report calls for a set of core fundamental values, an urgent regulation on the recent developments to govern the use and creation of robots and AI. [It] acknowledges the possibility that within the space of a few decades, AI could surpass human intellectual capacity and challenge the human-robot relationship.

“Finally, the report calls for the creation of a European agency for robotics and AI that can provide technical, ethical and regulatory expertise. If MEPs vote in favour of legislation, the report will go to the European Commission, which will decide what legislative steps it will take.”

Creating artificial intelligence for the world

No one can say for certain whether AI will truly be a force for positive or negative change, but – despite the headlines – Hawking was positive about the future.

“I am an optimist and I believe that we can create AI for the world that can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management and prepare for its consequences well in advance,” he said. “Perhaps some of you listening today will already have solutions or answers to the many questions AI poses.”

You all have the potential to push the boundaries of what is accepted or expected, and to think big

However, he stressed that everyone has a part to play in ensuring AI is ultimately a benefit to humanity.

“We all have a role to play in making sure that we, and the next generation, have not just the opportunity but the determination to engage fully with the study of science at an early level, so that we can go on to fulfill our potential and create a better world for the whole human race,” he said.

“We need to take learning beyond a theoretical discussion of how AI should be, and take action to make sure we plan for how it can be. You all have the potential to push the boundaries of what is accepted or expected, and to think big.

“We stand on the threshold of a brave new world. It is an exciting – if precarious – place to be and you are the pioneers. I wish you well.”