Privatising the International Space Station is the start of the first city in space

The NASA-operated International Space Station’s days are numbered, but that may not be the end of the station itself. We find out how privatising the ISS could be the start of the first city in low-Earth orbit

The clock is ticking on NASA’s time aboard the International Space Station (ISS). The agency has set its sights on targets deeper into space, and the station itself, at least on NASA’s side, is unlikely to last beyond a decade without a significant overhaul.

But that doesn’t mean it’s the end for the ISS. Back in August, Bill Hill, NASA deputy associate administrator for exploration systems development, suggested that the ISS’ future lay with the private sector.

“NASA is trying to develop economic development in low-Earth orbit,” he said during a NASA press conference. “Ultimately, our desire is to hand the space station over to either a commercial entity or some other commercial capability so that research can continue in low-Earth orbit.”

He’s not the only one with this view. “I certainly hope it’s privatised,” says James Muncy, founder of US-based space policy consultancy PoliSpace. “The issue is not just whether or not the International Space Station as the facility exists right now is privatised, the real easy issue is starting in 2024 or thereabouts when NASA has a need for a research capability in low-Earth orbit, do they choose to operate their own space station or do they choose to buy services from a commercial infrastructure provider?”

Running alongside this discussion is the steady growth of the commercial space industry, which according to Michael Suffredini, former NASA manager of the ISS and president of Axiom Space, now accounts for between 30% and 35% of activity on the space station.

The industry is still developing, but right now there is a mood many have compared to the California gold rush. And if privatisation of the space station is successful, this could lead to an explosion of economic activity in low-Earth orbit, and eventually, a city beyond the atmosphere.

Making money in low-Earth orbit

Regular access to low-Earth orbit (LEO), which is what the ISS provides, has proved to be immensely valuable to humanity, both in terms of our understanding and access to the wider universe, and our ability to improve life on Earth.

In addition to offering a space for satellites that do everything from provide communications infrastructure to monitor climate events, LEO is a vital proving ground for missions further into the solar system.

img-2

“We can’t afford to figure [life support] out on the journey to Mars,” said Suffredini, during a talk at the European Space Agency’s (ESA) Space for Inspiration Summit. “You really can’t do a sustained deep-space mission without a low-Earth orbit platform.”

But LEO is beginning to show promise for a wide variety of other purposes, thanks to the efforts of the commercial space industry.

“There are already what I would call experimental things going on,” says Muncy. “You would never build a permanently manned space station in order to pursue these economic opportunities, but given that we have the marginal cost of using the space station, to generate new economic activity makes sense.”

Among these are space 3D printing company Made in Space, which has already begun a project to manufacture optical fibre on the ISS due to the increase in fibre quality that manufacturing in micro-gravity provides. Other materials could see similar benefits, making LEO a potential manufacturing hotbed in the future.

“This is where I think the biggest growth will happen,” added Suffredini. “It won’t happen overnight, but if we keep working at it, it will happen.”

Even satellites could be made there and then launched, cutting deployment times from months to less than a week and allowing them to be quickly added as needed, such as in the event of a volcanic eruption.

Then there’s the demand for private research, space tourism and even sovereign astronauts from non-space-faring nations, all of which make the potential to make money in LEO ever greater.

NASA moves on

For better or for worse, however, NASA’s days running the ISS are numbered.

“Fundamentally NASA has decided that commercialisation of low-Earth orbit is one of our agency objectives,” summarised Marybeth Edeen, ISS research integration office manager for NASA, also speaking at ESA‘s Space for Inspiration Summit.

A key reason for this is the agency’s plans for cis-lunar space and Mars, combined with its modest budget.

You can’t maintain the current programme infrastructure and the new programme simultaneously unless you dramatically increase NASA’s budget, and no one is predicting that that’s going to happen

“There continues to be beneficial things that NASA can do and things that NASA probably needs to do in low-Earth orbit to support human exploration beyond low-Earth orbit, but you can’t afford to spend $4bn a year operating the ISS, including the costs of delivery cargo and crew and things like that, and also mount the missions that you want to mount,” says Muncy.

“You can’t maintain the current programme infrastructure and the new programme simultaneously unless you dramatically increase NASA’s budget, and no one is predicting that that’s going to happen.”

Even if it was able to find the cash, the ISS is likely to hit NASA with a major repair bill before long.

“NASA believes that most of the hardware elements on the non-Russian part of the space station can function through at least probably 2028, plus or minus [a few years], and that’s with spare parts that have already been manufactured,” explains Muncy.

“Well, it may be that some of the core elements on the US side or some of the core elements on the Russian side really can’t function reliably or cost effectively a whole lot longer after 2024, 2027.”

The need for action

For the fledgling commercial space industry, there is an increasingly urgent need to ensure continuity.

“We have to make sure that with the end of ISS activities we will not stop because otherwise nobody will invest, and who invests has to be convinced that we have continuation,” said Fritz Merkle, a member of the management board of OHB System, one of the biggest private space companies in Europe, at the ESA event.

“To do commercial activities on the space station takes 6 to 7 years ‒ who will invest if someone switches off the lights?”

Some have proposed that the industry simply build a new space station, but this would likely come with casualties.

“I would expect some companies would survive, but most would fail if they had to start from the ground up on a new platform,” added Suffredini. “The important part in my mind is the transition.”

Suffredini, though, may have the answer. His company Axiom Space is developing a commercial module for the ISS, and with a deployment date set for 2020, it could represent the start of serious commercial activity on the space station.

“We’re proposing that we build a module to go to the International Space Station first,” he said. “It’ll be a very large module; it will host astronauts.”

Growing the low-Earth orbit economy

The transition to commercialisation is, according to Muncy, set to be led by the increase in the ISS’ population, which will come with the introduction of NASA’s Commercial Crew Program.

Summarised by NASA as “like getting a taxi ride to low-Earth orbit”, this will see SpaceX and Boeing carry astronauts to the ISS for both NASA and ‒ potentially ‒ private companies.

“When commercial crews start functioning in a year to two years for NASA, they will be able to expand the crew size of the international base station fairly dramatically,” explains Muncy.

img-1

Images courtesy of ESA/NASA

Initially, he says, they will be able to up their constant population by just one to 7, with the maximum capacity of the ISS currently running at 12, but this alone would give a significant boost to the amount of time available to undertake commercial research.

“Right now with six people at the space station, NASA and its non-Russian partners share approximately 40 hours a week; basically one person working full-time in space,” he adds.

“With seven people we will immediately have another whole person because you don’t need the next person to actually work on infrastructure of the space station at all. They can effectively work full-time on research. If we can expand the crew size up to 9 or 12 then you’ll have several times more ability to carry out research and commercial experiments on the space station.”

As research opens up more commercial opportunities in LEO, it could kickstart a cycle of growth for the industry that will lead to more people going into space for more reasons.

“We hope that as we lower the costs, as Elon Musk continues to lower the cost of rockets, as Jeff Bezos enters the orbital launch market, you will see price competition in launch, that it will become cheaper to get people up there,” says Muncy.

This, he says, would drive the development of “not very pretty but cost-effective, workable habitats and space facilities built in low-Earth orbit that keep people alive to do research, manufacture things and try out commercial projects.”

“As it becomes less expensive for people to operate in low-Earth orbit, more commercial applications will make sense and you’ll have a virtuous cycle of lower costs, more users, more applications, more new things you can do that are of benefit,” he continues.

“That will drive having more people in space, which will lower the cost of having one person in space, and the cycle continues.”

A permanent home

According to Muncy, this rapid development of the commercial space industry could lead to people living in low-Earth orbit within this century.

“You could absolutely see these very small humble beginnings at ISS lead to – if we privatise it correctly, if we generate new commercial activities correctly, if we find a way for the government to let go of control and to turn more over to free citizens from the nations that helped build the ISS – then you could see cities in space come out of it within 50 years. That’s the reason to have it.

The question is how do we use that first six-person settlement to grow a 12-person settlement? And to grow a 20-person settlement?

“It’s the first human settlement in space. It may only have six people on it, but you have to start somewhere. The question is how do we use that first six-person settlement to grow a 12-person settlement? And to grow a 20-person settlement? And to grow multiple settlements of some number of people so that ultimately you have hundreds of people living in space, and then thousands of people living in space?”

At that point, Muncy says, you have a community where “the normal creativity and enterprise and the ambition and curiosity of humanity takes over,” driving the cost down to a level where at least some of the population can afford it.

“[As] more people visit space, the cost of going into space goes from right now with the Russians about $80 million per person down to $8 million per person. Well how many people at that point could afford either to buy a ticket, or to come up with some sort of economic activity in space that would justify going to space?” he asks.

“Is it billions? No. Is it millions? No. But it is thousands, maybe tens of thousands. And if it’s tens of thousands, then the cost of going into space will go down from millions to perhaps hundreds of thousands. And if it gets down to hundreds of thousands, well then after you’ve worked a long time in your life, or I’ve worked a long time in my life, who knows? We might sell our house and go into space.”

Life goes on

For many, low-Earth orbit could become the new frontier, where new lives can be made and new communities founded.

“It’s not as cheap as getting on a steam ship from Poland in the early 1900s to go to America but it’s still a frontier,” says Muncy.

“It’s still a new place with new rules, new resources and new opportunities, where people who for whatever reason would like to do something new in their lives. It’s going to be hard and risky and expensive, but over time it will become more civilised, and the opportunities will be there for people on Earth with the dream and the motivation and hopefully either some money or the ability to raise the money to go try their ideas.”

In time, perhaps even before 2050, we could see the first children being born in LEO, particularly if efforts are made to develop artificial gravity.

ftr_1609_feature_footer“If there are people living in space for long periods of time and we’ve found a way to deal with the gravitational effects of living in space, by coming up with countermeasures like spinning two modules so you create artificial gravity or whatever; if we can deal with those biological issues that we already know exist, then I see no reason why you couldn’t have conception and birth – certainly live births in space and quite probably conceptions in space.

“We’re not there yet because we don’t have enough people in space and we are too embarrassed to even talk about sex in space. But if people are going to live in space then people are going to reproduce in space.”

Russia announces testing of country-wide drone control network, paving way for commercial boom

Roscosmos, the Russian space agency, has announced that it will begin testing a vast drone control network that will run across the nation.

The network, which is based on the country’s extensive existing satellite system, will allow small UAVs to safely operate in massive numbers within Russian airspace.

Once established, it will likely lead to an explosion in the commercial use of drones in the country, with drone deliveries in particular becoming viable on an unprecedented scale.

The announcement was made at Navitech 2017 in Moscow yesterday by experts from Russian Space Systems, a space hardware company owned by Roscosmos. Outlining the details of the system, they said that testing would begin this year, but did not provide a precise date for its start.

Each drone in the network will follow a route determined by the system, with ground-based infrastructure continuously receiving real-time data about its location and flight parameters.

This will immediately be processed and disseminated across the network, to ensure that large numbers of drones can be safely flown at any time, without interfering with both each other and traditional airspace traffic.

The network will not require the establishment of major new infrastructure, as all data will be transmitted through a combination of existing systems: FM transmitters, the country’s established cellular communication systems and GLONASS, Russia’s global satellite navigation system, which has provided 100% coverage of the country since 2011.

The system will also provide real-time data about no-fly zones, allowing routes to be adjusted immediately in response to changing information, and will offer a “platform of integrated applications” to UAV operators, content providers and insurance companies.

Roscosmos believes that the system will significantly reduce operating costs for drone owners by limiting the risks involved with running a commercial drone operation, as well as creating the conditions for new industries to emerge.

Among the industries the space agency expects to blossom through the adoption of the network are drone insurance, cloud software that would increase the capabilities of drones and what it calls “convenient services” – a term that likely refers to drone deliveries.

If the platform does deliver on this hope, it is likely Russia would become the first country with an extensive drone delivery network, realising a dream that was first brought to prominence by Amazon back in 2013. However, the US-based company is unlikely to become the main player in the Russian market, having as yet shown little interest in the country for its Prime Air operations.

As with many countries, drone deliveries are currently a rare occurrence in Russia, with notable exceptions including DoDo Pizza, a Syktyvkar-based company that began delivering pizzas to local residents back in 2014.

NFL players’ union signs historic deal that will enable players to sell their own performance data and make them “healthier and wealthier”

The NFL players association (NFLPA) has signed a landmark deal with human performance company WHOOP that will give players access to, ownership of and the option to sell their individual health data.

All current and future NFL players will be issued with a WHOOP Strap 2.0, which allows them to, without interference from their clubs, monitor their own performance, recovery and sleep.

WHOOP’s strap contains five sensors that measure data 100 times per second and automatically transmit it to accompanying mobile and web apps. WHOOP has also developed a Team Dashboard, which it says has “27 levels of privacy to ensure sharing data is completely secure and comfortable for all parties involved”.

“Our mission at WHOOP is to empower athletes. This partnership with the NFLPA is truly the first of its kind in that athletes will finally become both healthier and wealthier by collecting, controlling, and ultimately having the ability to sell their own health and performance data,” said Will Ahmed, founder and CEO at WHOOP.

“We applaud the NFLPA’s vision and share its commitment to work with athletes to better monitor their recovery and enable longer careers.”

Image and featured image courtesy of Alan Kotok

The partnership between the NFLPA and WHOOP is the first of its kind and was secured through the OneTeam Collective, which is an initiative designed to give companies like WHOOP the opportunity to leverage the NFLPA’s exclusive player rights.

WHOOP has hinted at seeking further partnerships with players’ unions in future.

In addition to owning their own data, as part of the agreement NFL players can design custom licensed bands for the WHOOP Strap, which will be made available commercially and allow players to further monetise the arrangement between the two parties.

“Every day, NFL players produce data that can translate into physiological and financial opportunities. We see partnering with WHOOP as the first step in harnessing this exciting technology,” said Ahmad Nassar, President of NFL Players Inc.

“We are excited to have WHOOP and its innovative, holistic monitoring technology serve as our first OneTeam Collective deal. Together, we’re paving the way towards a new frontier where athletes are empowered by data.”

Russell Okung playing for the Denver Broncos in 2016. Image courtesy of By Jeffrey Beall – Own work, CC BY 4.0

Along with the commercial opportunities WHOOP will offer players, the partnership also promises to help players optimise training and recovery, improve performance and reduce injuries.

The NFLPA and WHOOP will both study the effects travel, sleep, scheduling and injuries have on recovery and generate reports for players aimed at boosting athletic performance.

“WHOOP and the NFLPA are putting the power of data directly in the players’ hands. I want to recover faster, avoid injuries, and have a longer career. This partnership has the potential to contribute to my health, which is imperative to my career in football,” said Russell Okung of the Los Angeles Chargers.