Privatising the International Space Station is the start of the first city in space

The NASA-operated International Space Station’s days are numbered, but that may not be the end of the station itself. We find out how privatising the ISS could be the start of the first city in low-Earth orbit

The clock is ticking on NASA’s time aboard the International Space Station (ISS). The agency has set its sights on targets deeper into space, and the station itself, at least on NASA’s side, is unlikely to last beyond a decade without a significant overhaul.

But that doesn’t mean it’s the end for the ISS. Back in August, Bill Hill, NASA deputy associate administrator for exploration systems development, suggested that the ISS’ future lay with the private sector.

“NASA is trying to develop economic development in low-Earth orbit,” he said during a NASA press conference. “Ultimately, our desire is to hand the space station over to either a commercial entity or some other commercial capability so that research can continue in low-Earth orbit.”

He’s not the only one with this view. “I certainly hope it’s privatised,” says James Muncy, founder of US-based space policy consultancy PoliSpace. “The issue is not just whether or not the International Space Station as the facility exists right now is privatised, the real easy issue is starting in 2024 or thereabouts when NASA has a need for a research capability in low-Earth orbit, do they choose to operate their own space station or do they choose to buy services from a commercial infrastructure provider?”

Running alongside this discussion is the steady growth of the commercial space industry, which according to Michael Suffredini, former NASA manager of the ISS and president of Axiom Space, now accounts for between 30% and 35% of activity on the space station.

The industry is still developing, but right now there is a mood many have compared to the California gold rush. And if privatisation of the space station is successful, this could lead to an explosion of economic activity in low-Earth orbit, and eventually, a city beyond the atmosphere.

Making money in low-Earth orbit

Regular access to low-Earth orbit (LEO), which is what the ISS provides, has proved to be immensely valuable to humanity, both in terms of our understanding and access to the wider universe, and our ability to improve life on Earth.

In addition to offering a space for satellites that do everything from provide communications infrastructure to monitor climate events, LEO is a vital proving ground for missions further into the solar system.

img-2

“We can’t afford to figure [life support] out on the journey to Mars,” said Suffredini, during a talk at the European Space Agency’s (ESA) Space for Inspiration Summit. “You really can’t do a sustained deep-space mission without a low-Earth orbit platform.”

But LEO is beginning to show promise for a wide variety of other purposes, thanks to the efforts of the commercial space industry.

“There are already what I would call experimental things going on,” says Muncy. “You would never build a permanently manned space station in order to pursue these economic opportunities, but given that we have the marginal cost of using the space station, to generate new economic activity makes sense.”

Among these are space 3D printing company Made in Space, which has already begun a project to manufacture optical fibre on the ISS due to the increase in fibre quality that manufacturing in micro-gravity provides. Other materials could see similar benefits, making LEO a potential manufacturing hotbed in the future.

“This is where I think the biggest growth will happen,” added Suffredini. “It won’t happen overnight, but if we keep working at it, it will happen.”

Even satellites could be made there and then launched, cutting deployment times from months to less than a week and allowing them to be quickly added as needed, such as in the event of a volcanic eruption.

Then there’s the demand for private research, space tourism and even sovereign astronauts from non-space-faring nations, all of which make the potential to make money in LEO ever greater.

NASA moves on

For better or for worse, however, NASA’s days running the ISS are numbered.

“Fundamentally NASA has decided that commercialisation of low-Earth orbit is one of our agency objectives,” summarised Marybeth Edeen, ISS research integration office manager for NASA, also speaking at ESA‘s Space for Inspiration Summit.

A key reason for this is the agency’s plans for cis-lunar space and Mars, combined with its modest budget.

You can’t maintain the current programme infrastructure and the new programme simultaneously unless you dramatically increase NASA’s budget, and no one is predicting that that’s going to happen

“There continues to be beneficial things that NASA can do and things that NASA probably needs to do in low-Earth orbit to support human exploration beyond low-Earth orbit, but you can’t afford to spend $4bn a year operating the ISS, including the costs of delivery cargo and crew and things like that, and also mount the missions that you want to mount,” says Muncy.

“You can’t maintain the current programme infrastructure and the new programme simultaneously unless you dramatically increase NASA’s budget, and no one is predicting that that’s going to happen.”

Even if it was able to find the cash, the ISS is likely to hit NASA with a major repair bill before long.

“NASA believes that most of the hardware elements on the non-Russian part of the space station can function through at least probably 2028, plus or minus [a few years], and that’s with spare parts that have already been manufactured,” explains Muncy.

“Well, it may be that some of the core elements on the US side or some of the core elements on the Russian side really can’t function reliably or cost effectively a whole lot longer after 2024, 2027.”

The need for action

For the fledgling commercial space industry, there is an increasingly urgent need to ensure continuity.

“We have to make sure that with the end of ISS activities we will not stop because otherwise nobody will invest, and who invests has to be convinced that we have continuation,” said Fritz Merkle, a member of the management board of OHB System, one of the biggest private space companies in Europe, at the ESA event.

“To do commercial activities on the space station takes 6 to 7 years ‒ who will invest if someone switches off the lights?”

Some have proposed that the industry simply build a new space station, but this would likely come with casualties.

“I would expect some companies would survive, but most would fail if they had to start from the ground up on a new platform,” added Suffredini. “The important part in my mind is the transition.”

Suffredini, though, may have the answer. His company Axiom Space is developing a commercial module for the ISS, and with a deployment date set for 2020, it could represent the start of serious commercial activity on the space station.

“We’re proposing that we build a module to go to the International Space Station first,” he said. “It’ll be a very large module; it will host astronauts.”

Growing the low-Earth orbit economy

The transition to commercialisation is, according to Muncy, set to be led by the increase in the ISS’ population, which will come with the introduction of NASA’s Commercial Crew Program.

Summarised by NASA as “like getting a taxi ride to low-Earth orbit”, this will see SpaceX and Boeing carry astronauts to the ISS for both NASA and ‒ potentially ‒ private companies.

“When commercial crews start functioning in a year to two years for NASA, they will be able to expand the crew size of the international base station fairly dramatically,” explains Muncy.

img-1

Images courtesy of ESA/NASA

Initially, he says, they will be able to up their constant population by just one to 7, with the maximum capacity of the ISS currently running at 12, but this alone would give a significant boost to the amount of time available to undertake commercial research.

“Right now with six people at the space station, NASA and its non-Russian partners share approximately 40 hours a week; basically one person working full-time in space,” he adds.

“With seven people we will immediately have another whole person because you don’t need the next person to actually work on infrastructure of the space station at all. They can effectively work full-time on research. If we can expand the crew size up to 9 or 12 then you’ll have several times more ability to carry out research and commercial experiments on the space station.”

As research opens up more commercial opportunities in LEO, it could kickstart a cycle of growth for the industry that will lead to more people going into space for more reasons.

“We hope that as we lower the costs, as Elon Musk continues to lower the cost of rockets, as Jeff Bezos enters the orbital launch market, you will see price competition in launch, that it will become cheaper to get people up there,” says Muncy.

This, he says, would drive the development of “not very pretty but cost-effective, workable habitats and space facilities built in low-Earth orbit that keep people alive to do research, manufacture things and try out commercial projects.”

“As it becomes less expensive for people to operate in low-Earth orbit, more commercial applications will make sense and you’ll have a virtuous cycle of lower costs, more users, more applications, more new things you can do that are of benefit,” he continues.

“That will drive having more people in space, which will lower the cost of having one person in space, and the cycle continues.”

A permanent home

According to Muncy, this rapid development of the commercial space industry could lead to people living in low-Earth orbit within this century.

“You could absolutely see these very small humble beginnings at ISS lead to – if we privatise it correctly, if we generate new commercial activities correctly, if we find a way for the government to let go of control and to turn more over to free citizens from the nations that helped build the ISS – then you could see cities in space come out of it within 50 years. That’s the reason to have it.

The question is how do we use that first six-person settlement to grow a 12-person settlement? And to grow a 20-person settlement?

“It’s the first human settlement in space. It may only have six people on it, but you have to start somewhere. The question is how do we use that first six-person settlement to grow a 12-person settlement? And to grow a 20-person settlement? And to grow multiple settlements of some number of people so that ultimately you have hundreds of people living in space, and then thousands of people living in space?”

At that point, Muncy says, you have a community where “the normal creativity and enterprise and the ambition and curiosity of humanity takes over,” driving the cost down to a level where at least some of the population can afford it.

“[As] more people visit space, the cost of going into space goes from right now with the Russians about $80 million per person down to $8 million per person. Well how many people at that point could afford either to buy a ticket, or to come up with some sort of economic activity in space that would justify going to space?” he asks.

“Is it billions? No. Is it millions? No. But it is thousands, maybe tens of thousands. And if it’s tens of thousands, then the cost of going into space will go down from millions to perhaps hundreds of thousands. And if it gets down to hundreds of thousands, well then after you’ve worked a long time in your life, or I’ve worked a long time in my life, who knows? We might sell our house and go into space.”

Life goes on

For many, low-Earth orbit could become the new frontier, where new lives can be made and new communities founded.

“It’s not as cheap as getting on a steam ship from Poland in the early 1900s to go to America but it’s still a frontier,” says Muncy.

“It’s still a new place with new rules, new resources and new opportunities, where people who for whatever reason would like to do something new in their lives. It’s going to be hard and risky and expensive, but over time it will become more civilised, and the opportunities will be there for people on Earth with the dream and the motivation and hopefully either some money or the ability to raise the money to go try their ideas.”

In time, perhaps even before 2050, we could see the first children being born in LEO, particularly if efforts are made to develop artificial gravity.

ftr_1609_feature_footer“If there are people living in space for long periods of time and we’ve found a way to deal with the gravitational effects of living in space, by coming up with countermeasures like spinning two modules so you create artificial gravity or whatever; if we can deal with those biological issues that we already know exist, then I see no reason why you couldn’t have conception and birth – certainly live births in space and quite probably conceptions in space.

“We’re not there yet because we don’t have enough people in space and we are too embarrassed to even talk about sex in space. But if people are going to live in space then people are going to reproduce in space.”

Australian Prime Minister demands end to encryption

The Australian government has proposed legislation that would force messaging apps like WhatsApp to decrypt encrypted messages. “The laws of mathematics are very commendable, but the only law that applies in Australia is the law of Australia," said Australian Prime Minister Malcolm Turnbull.

Source: Independent

James Murdoch joins Tesla's board

Tesla has announced that it will add two independent directors to its board, including 21st Century Fox CEO James Murdoch. The additions have been announced just a few months after Tesla confirmed it was seeking to add independent directors without ties to CEO and founder Elon Musk.

Source: Tech Crunch

T.Rex wasn't capable of moving beyond a brisk walk

Scientists have concluded the size and weight of a T. Rex would have prevented it from moving faster than 20km/h. The scientists used a computer simulation to assess the dinosaur's speed, and found that if it had of moved from a brisk walk to a sprint, its legs would have snapped under the weight of its body.

Source: BBC

Samsung's Bixby virtual assistant now available in the US

Samsung has officially rolled out its Bixby voice assistant to S8 and S8 Plus owners in the US, so every American with one of the flagship phones can now talk to their very own virtual assistant. However, it's not currently clear when Bixby will be available in other English-speaking countries or other languages.

Source: Engadget

SpaceX says it can reuse rockets within 24 hours by 2018

Elon Musk has been detailing how SpaceX plans to be refurbishing and reusing Falcon 9 rocket boosters within a 24-hour turnaround window by 2018. At the ISS R&D conference on Wednesday, Musk said that the company already has a technical path in place to achieve the goal.

Source: Tech Crunch

Musk says he has approval for New York to Washington DC tunnel

Elon Musk has been commenting on the future of The Boring Company, his tunnel-digging endeavor. Musk took to Twitter to claim that he had, “Just received verbal govt approval for The Boring Company to build an underground NY-Phil-Balt-DC Hyperloop. NY-DC in 29 mins.”

Source: Ars Technica

You can now explore the International Space Station with Google Street View

If you’ve ever wondered what life is like aboard the International Space Station then Google has a treat in store for you because beginning today the ISS is available via Google Maps’ Street View.

Astronauts have been working and living on the ISS – a structure made up of 15 connected modules that floats 250 miles above Earth – for the past 16 years.

Now with Street View regular citizens can explore the station, and go everywhere from the sleeping quarters to where the space suits are kept. This is the first time Street View has ventured beyond planet Earth, and for the benefit of viewers the Street View feature also comes annotated, with handy little dots you can click on to explain what everything does, which is another first.

“In the six months that I spent on the International Space Station, it was difficult to find the words or take a picture that accurately describes the feeling of being in space,” said European Space Agency astronaut Thomas Pesquet in a blog post.

“Working with Google on my latest mission, I captured Street View imagery to show what the ISS looks like from the inside, and share what it’s like to look down on Earth from outer space.”

In his blog post, Pesquet goes on to describe how because of the constraints associated with living and working in space, it wasn’t possible to collect Street View using Google’s usual methods.

Instead, the Street View team worked with NASA at the Johnson Space Center in Houston, Texas and Marshall Space Flight Center in Huntsville, Alabama to design a gravity-free method of collecting the imagery using DSLR cameras and equipment already on the ISS.

Still photos were captured in space that were sent down to Earth where they were stitched together to create panoramic 360 degree imagery of the ISS.

Images courtesy of Google

“There are a lot of obstacles up there, and we had limited time to capture the imagery,” recalled Pesquet.

“Oh, and there’s that whole zero gravity thing.”

Pesquet ended his blog post by revealing the inspiration behind the Street View and ISS collaboration.

“Looking at Earth from above made me think about my own world a little differently, and I hope that the ISS on Street View changes your view of the world too.” said Pesquet.