The city that Mother Nature built

Unfortunately, we’ve chosen to build our cities out of two completely unsustainable materials: steel and concrete. If we want to lower carbon emissions we are going to have to invent new materials pretty quickly. Could looking to nature hold the key? We find out more

Pretty much ever since we stopped using branches and twigs to build homes, we’ve thought of concrete and steel as the materials of choice when it comes to construction. But these materials are responsible for as much as a tenth of worldwide carbon emissions, so we have two choices: either we start producing steel and concrete in more energy-efficient ways, or we create new building materials to take their place.

Ask the US’ Defence Advanced Research Projects Agency (DARPA) or University of Cambridge bioengineer Michelle Oyen what they think the cities of tomorrow will be made of, and they might answer bone, bark, egg shells or spider’s silk.

DARPA and Oyen are part of a growing movement that sees biomimicry, or the principle of seeking sustainable solutions to human challenges by emulating nature’s time-tested patterns and strategies, as the future of construction.

The benefit of letting nature guide our construction techniques is obvious. For example, despite knowing its cost to the environment we use steel because it’s really good at taking tension, but spider’s silk is stronger than steel and more flexible – because it is a perfectly designed composite of proteins. It makes sense then that we stop using steel and prop buildings up with spider’s silk; apart from anything else who wouldn’t want to live in a city that looks like Spiderman has had a particularly busy night of webslinging. The reason we don’t is because the construction industry is set in its ways, and we believe we can ‘green’ steel. But why bother when nature has already given us a better alternative?

Disrupting construction

“The construction industry is a very conservative one,” said Oyen in a statement. “All of our existing building standards have been designed with concrete and steel in mind. Constructing buildings out of entirely new materials would mean completely rethinking the whole industry. But if you want to do something really transformative to bring down carbon emissions, then I think that’s what we have to do. If we’re going to make a real change, a major rethink is what has to happen.”

Featured image courtesy of eVolo

Featured image courtesy of eVolo

If we want to move to a more sustainable future then some of our preconceptions about construction are going to have to be disrupted. The principal assumption that has to change is: just because we can make buildings out of concrete and steel, doesn’t mean we have to or we should. The cement industry, for example, is one of the world’s most polluting, accounting for 5% of man-made carbon-dioxide emissions each year, as making and transporting concrete puts a massive burden on the environment.

There seems to be little desire to change. Retrofitting old kilns to improve thermal efficiency could lower concrete manufacturers’ energy usage by two-fifths, according to the Carbon Disclosure Project, but even this would only represent symbolic greening.

What is needed is drastic change, and what could be more dramatic than replacing concrete and steel with bone? While bone cities may seem haunting at first glance, bone is stronger than steel, and just one cubic inch of it can bear a load four times greater than concrete. Bone gets its strength from having a roughly equal ratio of proteins and minerals – the minerals give bone stiffness and hardness, while the proteins give it toughness or resistance to fracture. Bones also have the advantage of being self-healing, which is another feature that engineers are trying to bring to biomimetic materials.

DARPA’s living materials

The US’ research agency, DARPA, has already realised that living materials provide many advantages, as they can be grown where needed, self-repair when damaged and respond to changes in their surroundings. The agency has recently launched the Engineered Living Materials (ELM) programme to create a new class of materials that combine the structural properties of traditional buildings with the added benefits that living systems provide.

Imagine that instead of shipping finished materials, we can ship precursors and rapidly grow them on site using local resources

“The vision of the ELM programme is to grow materials on demand where they are needed,” said ELM programme manager, Justin Gallivan. “Imagine that instead of shipping finished materials, we can ship precursors and rapidly grow them on site using local resources. And, since the materials will be alive, they will be able to respond to changes in their environment and heal themselves in response to damage.”

Being able to construct with living materials could offer significant benefits; however, DARPA has commenced its ELM programme because it concluded that scientists and engineers are currently unable to easily control the size and shape of living materials in ways that would make them useful for construction. But Oyen and her team at the Oyen Lab (which came into being in 2006 at Cambridge University’s Engineering Department) have been constructing small samples of artificial bone and eggshell, which they believe could be scaled up and used as low-carbon building materials.

Oyen’s laboratory

“What we’re trying to do is to rethink the way that we make things,” said Oyen. “Engineers tend to throw energy at problems, whereas nature throws information at problems – they fundamentally do things differently.”

Oyen cites eggshells as an example of nature doing something totally different that we can mimic. “If you look at a chicken, they go from zero to eggshell in 18 hours,” said Oyen in an interview with the Guardian. “It’s almost a millimetre thick, 95% ceramic and it has this organic component that makes it very tough. The whole thing has been put down in an extremely short period of time, at an ambient pressure and at body temperature, barely above ambient temperatures.”

Nature has already given us an idea of the kinds of resilient and sustainable materials that could be used to build the cities of the future. Oyen’s eggshells are already much more resistant to fracture than manmade ceramic. The experiments being carried out by Oyen and DARPA will hopefully contribute to the construction industry taking the way nature creates sustainable structures and putting this knowledge into practical use. Then we may well see skyscrapers made out of bone and eggshell.

factor-archive-28“From a timeline perspective,” said Oyen, “for the last 10 years we’ve been trying to figure these things out. We’ve probably still a few more years to go and then maybe the following decade will be taking all the things we’ve learned and being able to apply them to making new materials.”

XPRIZE launches contest to build remote-controlled robot avatars

Prize fund XPRIZE and All Nippon Airways are offering $10 million reward to research teas who develop tech that eliminates the need to physically travel. The initial idea is that instead of plane travel, people could use goggles, ear phones and haptic tech to control a humanoid robot and experience different locations.

Source: Tech Crunch

NASA reveals plans for huge spacecraft to blow up asteroids

NASA has revealed plans for a huge nuclear spacecraft capable of shunting or blowing up an asteroid if it was on course to wipe out life on Earth. The agency published details of its Hammer deterrent, which is an eight tonne spaceship capable of deflecting a giant space rock.

Source: The Telegraph

Sierra Leone hosts the world’s first blockchain-powered elections

Sierra Leone recorded votes in its recent election to a blockchain. The tech, anonymously stored votes in an immutable ledger, thereby offering instant access to the election results. “This is the first time a government election is using blockchain technology,” said Leonardo Gammar of Agora, the company behind the technology.

Source: Quartz

AI-powered robot shoots perfect free throws

Japanese news agency Asahi Shimbun has reported on a AI-powered robot that shoots perfect free throws in a game of basketball. The robot was training by repeating shots, up to 12 feet from the hoop, 200,000 times, and its developers said it can hit these close shots with almost perfect accuracy.

Source: Motherboard

Russia accused of engineering cyberattacks by the US

Russia has been accused of engineering a series of cyberattacks that targeted critical infrastructure in America and Europe, which could have sabotaged or shut down power plants. US officials and private security firms claim the attacks are a signal by Russia that it could disrupt the West’s critical facilities.

Google founder Larry Page unveils self-flying air taxi

A firm funded by Google founder Larry Page has unveiled an electric, self-flying air taxi that can travel at up to 180 km/h (110mph). The taxi takes off and lands vertically, and can do 100 km on a single charge. It will eventually be available to customers as a service "similar to an airline or a rideshare".

Source: BBC

World-renowned physicist Stephen Hawking has died at the age of 76. When Hawking was diagnosed with motor neurone disease aged 22, doctors predicted he would live just a few more years. But in the ensuing 54 years he married, kept working and inspired millions of people around the world. In his last few years, Hawking was outspoken of the subject of AI, and Factor got the chance to hear him speak on the subject at Web Summit 2017…

Stephen Hawking was often described as being a vocal critic of AI. Headlines were filled with predictions of doom by from scientist, but the reality was more complex.

Hawking was not convinced that AI was to become the harbinger of the end of humanity, but instead was balanced about its risks and rewards, and at a compelling talk broadcast at Web Summit, he outlined his perspectives and what the tech world can do to ensure the end results are positive.

Stephen Hawking on the potential challenges and opportunities of AI

Beginning with the potential of artificial intelligence, Hawking highlighted the potential level of sophistication that the technology could reach.

“There are many challenges and opportunities facing us at this moment, and I believe that one of the biggest of these is the advent and impact of AI for humanity,” said Hawking in the talk. “As most of you may know, I am on record as saying that I believe there is no real difference between what can be achieved by a biological brain and what can be achieved by a computer.

“Of course, there is unlimited potential for what the human mind can learn and develop. So if my reasoning is correct, it also follows that computers can, in theory, emulate human intelligence and exceed it.”

Moving onto the potential impact, he began with an optimistic tone, identifying the technology as a possible tool for health, the environment and beyond.

“We cannot predict what we might achieve when our own minds are amplified by AI. Perhaps with the tools of this new technological revolution, we will be able to undo some of the damage done to the natural world by the last one: industrialisation,” he said.

“We will aim to finally eradicate disease and poverty; every aspect of our lives will be transformed.”

However, he also acknowledged the negatives of the technology, from warfare to economic destruction.

“In short, success in creating effective AI could be the biggest event in the history of our civilisation, or the worst. We just don’t know. So we cannot know if we will be infinitely helped by AI, or ignored by it and sidelined or conceivably destroyed by it,” he said.

“Unless we learn how to prepare for – and avoid – the potential risks, AI could be the worst event in the history of our civilisation. It brings dangers like powerful autonomous weapons or new ways for the few to oppress the many. It could bring great disruption to our economy.

“Already we have concerns that clever machines will be increasingly capable of undertaking work currently done by humans, and swiftly destroy millions of jobs. AI could develop a will of its own, a will that is in conflict with ours and which could destroy us.

“In short, the rise of powerful AI will be either the best or the worst thing ever to happen to humanity.”

In the vanguard of AI development

In 2014, Hawking and several other scientists and experts called for increased levels of research to be undertaken in the field of AI, which he acknowledged has begun to happen.

“I am very glad that someone was listening to me,” he said.

However, he argued that there is there is much to be done if we are to ensure the technology doesn’t pose a significant threat.

“To control AI and make it work for us and eliminate – as far as possible – its very real dangers, we need to employ best practice and effective management in all areas of its development,” he said. “That goes without saying, of course, that this is what every sector of the economy should incorporate into its ethos and vision, but with artificial intelligence this is vital.”

Addressing a thousands-strong crowd of tech-savvy attendees at the event, he urged them to think beyond the immediate business potential of the technology.

“Perhaps we should all stop for a moment and focus our thinking not only on making AI more capable and successful, but on maximising its societal benefit”

“Everyone here today is in the vanguard of AI development. We are the scientists. We develop an idea. But you are also the influencers: you need to make it work. Perhaps we should all stop for a moment and focus our thinking not only on making AI more capable and successful, but on maximising its societal benefit,” he said. “Our AI systems must do what we want them to do, for the benefit of humanity.”

In particular he raised the importance of working across different fields.

“Interdisciplinary research can be a way forward, ranging from economics and law to computer security, formal methods and, of course, various branches of AI itself,” he said.

“Such considerations motivated the American Association for Artificial Intelligence Presidential Panel on Long-Term AI Futures, which up until recently had focused largely on techniques that are neutral with respect to purpose.”

He also gave the example of calls at the start of 2017 by Members of the European Parliament (MEPs) the introduction of liability rules around AI and robotics.

“MEPs called for more comprehensive robot rules in a new draft report concerning the rules on robotics, and citing the development of AI as one of the most prominent technological trends of our century,” he summarised.

“The report calls for a set of core fundamental values, an urgent regulation on the recent developments to govern the use and creation of robots and AI. [It] acknowledges the possibility that within the space of a few decades, AI could surpass human intellectual capacity and challenge the human-robot relationship.

“Finally, the report calls for the creation of a European agency for robotics and AI that can provide technical, ethical and regulatory expertise. If MEPs vote in favour of legislation, the report will go to the European Commission, which will decide what legislative steps it will take.”

Creating artificial intelligence for the world

No one can say for certain whether AI will truly be a force for positive or negative change, but – despite the headlines – Hawking was positive about the future.

“I am an optimist and I believe that we can create AI for the world that can work in harmony with us. We simply need to be aware of the dangers, identify them, employ the best possible practice and management and prepare for its consequences well in advance,” he said. “Perhaps some of you listening today will already have solutions or answers to the many questions AI poses.”

You all have the potential to push the boundaries of what is accepted or expected, and to think big

However, he stressed that everyone has a part to play in ensuring AI is ultimately a benefit to humanity.

“We all have a role to play in making sure that we, and the next generation, have not just the opportunity but the determination to engage fully with the study of science at an early level, so that we can go on to fulfill our potential and create a better world for the whole human race,” he said.

“We need to take learning beyond a theoretical discussion of how AI should be, and take action to make sure we plan for how it can be. You all have the potential to push the boundaries of what is accepted or expected, and to think big.

“We stand on the threshold of a brave new world. It is an exciting – if precarious – place to be and you are the pioneers. I wish you well.”