The seven planets and the ultracool dwarf: Why life in the Trappist-1 system could be decidedly weird

NASA has announced the discovery of a seven-planet system orbiting an ultracool red dwarf; one of the best hopes for finding life beyond Earth yet. But if Trappist-1 does host life, it will be like nothing we've ever encountered before

Yesterday NASA announced the discovery of seven Earth-sized exoplanets orbiting a small, dim star 40 light years from Earth. Trappist-1 is an unprecedented discovery, and is sure to keep astronomers busy for decades to come, but also offers one of our best hopes in the hunt for extra-terrestrial life.

Located in the Aquarius constellation, the exoplanet system contains three planets in the habitable zone, of which at least two are thought to have a rocky surface. And while this doesn’t guarantee the existence of life in the system, it does make it worthy of further investigation.

“Three of these planets are in the habitable zone where liquid water can pool on the surface. In fact, with the right atmospheric conditions there could be water on any of these planets,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

Over the next decade scientists will be performing numerous follow-up studies, with the soon-to-be-launched James Webb Space Telescope enabling scientists to detect evidence of water, methane, oxygen and other vital building blocks of life when it comes online in 2018.

“These planets are among the best of all the planets we know to follow up, to see the atmospheres, and also to look at biosignatures – if there are any,” added Zurbuchen.

“The discovery gives us a hint that finding a second Earth is not just a matter of if, but when.”

Under different suns

Trappist-1’s star is quite different ­­from our own Sun, meaning that any life that has evolved in its presence would be quite unlike that of Earth.

Most significantly, Trappist-1 is a red dwarf star, a class of stars also known as M-dwarfs that are increasingly being targeted in the search for life.

This M-dwarf is considerably smaller and burns at a lower temperature than our solar system’s star, and is smaller and cooler than most other M-dwarfs, hence the ultracool classification.  As a result, liquid water can exist on planets orbiting very close to it; the seven planets hug their star in tight orbits, all of which are closer than our innermost planet Mercury’s orbit of the sun.

This also means that the planets orbit considerably closer to each other than we do with our own planetary neighbours. If you were standing on the surface of one of the Trappist-1 planets, your planetary neighbour on some days would hang larger than our own Moon in the sky, and might be close enough to see its mountain ranges or cloud cover.

The sun would also be a far greater presence in the sky, looming six times larger than our own.

This would also mean trips between different planets in the system could take just a couple of days, potentially allowing if not life in the system then future humans to hop across Trappist-1.

A year a week

Because the planets are so much closer to their sun, their years are very different to our own, ranging from 1.5 days for the closest planet to the star to 20 days for the farthest.

For the three planets in the habitable zone, snappily named Trappist-1e, f and g, years are 6.1 days, 9.2 days and 12.4 days long respectively.

What impact, if any, that could have on life is unclear, but it does have the potential to affect how life evolves; on Earth many forms of life have seasonal responses that are influenced by the changes and length of our year.

Forever day, eternal night

NASA also believes that the planets may be tidally locked, meaning that one side of each is always facing the sun. This would result in life on the planets either eternally basking in daylight, or permanently shrouded in darkness.

Images courtesy of NASA-JPL/Caltech

It would also make for a very different weather system on each planet, with extreme temperature changes, and strong winds over the terminator – the line between day and night.

This could mean that life would require a certain atmosphere to be present for it to survive, in order to transport heat and moderate the overall climate, which is something that astronomers will know more about once the James Webb space telescope launches in 2018.

However, the wavelength of light Trappist-1’s star is supplying is also different to our own sun. This will result in a different hue, with a duskier red-orange daylight.

This would affect the wavelengths of light that life would be exposed to, and so would have an impact on how biological systems evolved in response. On Earth, plants photosynthesise best at specific wavelengths and have evolved to reflect unwanted green light from the Sun, giving them their colour. But on the Trappist-1 planets there will be a different spectrum of light, requiring any plants to adapt differently to their environment.

As a result, plants on Trappist-1’s planets could have orange and black foliage rather than our own green.

The hunt is on

Now that the world knows about the existence of the planets, scientists are scrambling to learn more about them. However, with no ability to send anything directly, there are limitations on what we can currently learn, and the scientists are keen to stress that any life found is highly unlikely to be sentient.

“I’m just talking about slime here – it’s far easier to evolve than sentient beings.” said Victoria Meadows of the University of Washington, the principal investigator for the NASA Astrobiology Institute’s Virtual Planetary Laboratory. “The majority of life we find out there is likely to be single cell, relatively primitive life.”

However, when the James Webb Space Telescope (JWST) finally comes online next year, scientists will be able to start looking for an atmosphere.

The majority of life we find out there is likely to be single cell, relatively primitive life.

“We will look at the atmosphere for gases that do not belong – gases  that might be attributed to life,” said Sara Seager, a professor of planetary science and physics at MIT, in a Reddit AMA. “We will not know if the gases are produced by microbial life or by intelligent alien species.”

Beyond that, we will need to build more sophisticated equipment if we are to determine what the flora and fauna of Trappist-1 is really like.

“In order to see vegetation and any other surface features (e.g. oceans, continents), we’ll need future telescopes beyond JWST that will be able to directly image exoplanets,” added Giada Arney, an astrobiologist at NASA Goddard Space Flight Center.

“We’ll need farther future technology that may become available in the coming decades that will allow us to block out the star’s light and observe the planets directly.”

Google’s Alphabet is Developing the Neighbourhood of the Future in Toronto

Alphabet, the parent company of Google, has announced that Sidewalk Labs, its urban innovation unit, will design a high-tech neighbourhood on Toronto’s waterfront. The neighbourhood, called Quayside, will prioritise, “environmental sustainability, affordability, mobility and economic opportunity”.

The initial phase for the development, part of the broader Sidewalk Toronto project, has received a $50m commitment from Sidewalk, but is predicted to cost at least a billion dollars by the time it’s fully completion.

As part of the broader project, Quayside seems to be the first attempt at creating what Sidewalk refers to as a “new kind of mixed-use, complete community”, an attempt the company presumably hopes to eventually expand across the waterfront and ultimately into other cities.

“This will not be a place where we deploy technology for its own sake, but rather one where we use emerging digital tools and the latest in urban design to solve big urban challenges in ways that we hope will inspire cities around the world,” Sidewalk Labs CEO Dan Doctoroff said on Tuesday.

Early concept images for the neighbourhood include self-driving cars and other infrastructure technologies. Images courtesy of Sidewalk Toronto

Located in the primarily publicly-owned 800-acre area called Port Lands, Quayside looks to be the test bed for potential future community design. With the planning process for the development starting with a community town hall on the 1st of November, we are still some ways off from knowing just what the neighbourhood will look like, but early illustrations include bikeshares, apartment housing, bus lines and parks.

More importantly, however, is Doctoroff’s previous discussions of what he believes future city design will look like. Technology focused, there’s been mention of sensors that track energy usage, machine learning and using high-speed internet to improve urban environments.

Specifically, at a summit hosted by The Information last year, he mentioned “thinking about [a city] from the internet up”. As would be expected from a company under the same parent as Google, Sidewalk seems to be concentrated on development that prioritises innovation and building communities with an eye to how technology can help found neighbourhoods.

“I like to describe it that we’re in the very early stages of what I call the fourth revolution of urban technology,” Doctoroff previously told Business Insider.

“The first three were the steam engine, which brought through trains and factories that industrialized cities. The second was the electric grid, which made cities 24 hours, made them more vertical, made them easier to get around in with subways and streetcars.

“The third was the automobile, which forced us to really re-think the use of public space in order to protect people from the danger of the automobile. We’re now in the fourth one. We’ve had an urban technology revolution … We’re seeing a real change in the physical nature of our cities.”

DJI’s First Drone Arena in Tokyo to Open This Saturday

Consumer drone giant DJI will open its first Japanese drone arena in the city of Tokyo this Saturday, providing a space for both hardened professionals and curious newcomers to hone their flying skills.

The arena, which covers an area of 535 square metres, will not only include a large flying area complete with obstacles, but also offer a store where visitors can purchase the latest DJI drones and a technical support area where drone owners can get help with quadcopter issues.

The hope is that the arena will allow those who are curious about the technology but currently lack the space to try it out to get involved.

“As interest around our aerial technology continues to grow, the DJI Arena concept is a new way for us to engage not just hobbyists but also those considering this technology for their work or just for the thrill of flying,” said Moon Tae-Hyun, DJI’s director of brand management and operations.

“Having the opportunity to get behind the remote controller and trying out the technology first hand can enrich the customer experience. When people understand how it works or how easy it is to fly, they will discover what this technology can do for them and see a whole new world of possibilities.”

Images courtesy of DJI

In addition to its general sessions, which will allow members of the public to drop by and try their hand at flying drones, the arena will also offer private hire, including corporate events. For some companies, then, drone flying could become the new golf.

There will also be regular events, allowing pros to compete against one another, and drone training, in the form of DJI’s New Pilot Experience Program, for newcomers.

The arena has been launched in partnership with Japan Circuit, a developer of connected technologies, including drones.

“We are extremely excited to partner with DJI to launch the first DJI Arena in Japan,” said Tetsuhiro Sakai, CEO of Japan Circuit.

“Whether you are a skilled drone pilot or someone looking for their first drone, we welcome everyone to come and learn, experience it for themselves, and have fun. The new DJI Arena will not only serve as a gathering place for drone enthusiasts but also help us reach new customers and anyone interested in learning about this incredible technology.”

The arena is the second of its kind to be launched by DJI, with the first located in Yongin, South Korea, and detailed in the video above. .

Having opened in 2016, the area has attracted visitors from around the world, demonstrating serious demand for this type of entertainment space.

If the Tokyo launch goes well, it’s likely DJI will look at rolling out its arena concept to other cities, perhaps even bringing the model to the US and Europe.

For now, however, those who are interested can book time at the Tokyo arena here.