The seven planets and the ultracool dwarf: Why life in the Trappist-1 system could be decidedly weird

NASA has announced the discovery of a seven-planet system orbiting an ultracool red dwarf; one of the best hopes for finding life beyond Earth yet. But if Trappist-1 does host life, it will be like nothing we've ever encountered before

Yesterday NASA announced the discovery of seven Earth-sized exoplanets orbiting a small, dim star 40 light years from Earth. Trappist-1 is an unprecedented discovery, and is sure to keep astronomers busy for decades to come, but also offers one of our best hopes in the hunt for extra-terrestrial life.

Located in the Aquarius constellation, the exoplanet system contains three planets in the habitable zone, of which at least two are thought to have a rocky surface. And while this doesn’t guarantee the existence of life in the system, it does make it worthy of further investigation.

“Three of these planets are in the habitable zone where liquid water can pool on the surface. In fact, with the right atmospheric conditions there could be water on any of these planets,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

Over the next decade scientists will be performing numerous follow-up studies, with the soon-to-be-launched James Webb Space Telescope enabling scientists to detect evidence of water, methane, oxygen and other vital building blocks of life when it comes online in 2018.

“These planets are among the best of all the planets we know to follow up, to see the atmospheres, and also to look at biosignatures – if there are any,” added Zurbuchen.

“The discovery gives us a hint that finding a second Earth is not just a matter of if, but when.”

Under different suns

Trappist-1’s star is quite different ­­from our own Sun, meaning that any life that has evolved in its presence would be quite unlike that of Earth.

Most significantly, Trappist-1 is a red dwarf star, a class of stars also known as M-dwarfs that are increasingly being targeted in the search for life.

This M-dwarf is considerably smaller and burns at a lower temperature than our solar system’s star, and is smaller and cooler than most other M-dwarfs, hence the ultracool classification.  As a result, liquid water can exist on planets orbiting very close to it; the seven planets hug their star in tight orbits, all of which are closer than our innermost planet Mercury’s orbit of the sun.

This also means that the planets orbit considerably closer to each other than we do with our own planetary neighbours. If you were standing on the surface of one of the Trappist-1 planets, your planetary neighbour on some days would hang larger than our own Moon in the sky, and might be close enough to see its mountain ranges or cloud cover.

The sun would also be a far greater presence in the sky, looming six times larger than our own.

This would also mean trips between different planets in the system could take just a couple of days, potentially allowing if not life in the system then future humans to hop across Trappist-1.

A year a week

Because the planets are so much closer to their sun, their years are very different to our own, ranging from 1.5 days for the closest planet to the star to 20 days for the farthest.

For the three planets in the habitable zone, snappily named Trappist-1e, f and g, years are 6.1 days, 9.2 days and 12.4 days long respectively.

What impact, if any, that could have on life is unclear, but it does have the potential to affect how life evolves; on Earth many forms of life have seasonal responses that are influenced by the changes and length of our year.

Forever day, eternal night

NASA also believes that the planets may be tidally locked, meaning that one side of each is always facing the sun. This would result in life on the planets either eternally basking in daylight, or permanently shrouded in darkness.

Images courtesy of NASA-JPL/Caltech

It would also make for a very different weather system on each planet, with extreme temperature changes, and strong winds over the terminator – the line between day and night.

This could mean that life would require a certain atmosphere to be present for it to survive, in order to transport heat and moderate the overall climate, which is something that astronomers will know more about once the James Webb space telescope launches in 2018.

However, the wavelength of light Trappist-1’s star is supplying is also different to our own sun. This will result in a different hue, with a duskier red-orange daylight.

This would affect the wavelengths of light that life would be exposed to, and so would have an impact on how biological systems evolved in response. On Earth, plants photosynthesise best at specific wavelengths and have evolved to reflect unwanted green light from the Sun, giving them their colour. But on the Trappist-1 planets there will be a different spectrum of light, requiring any plants to adapt differently to their environment.

As a result, plants on Trappist-1’s planets could have orange and black foliage rather than our own green.

The hunt is on

Now that the world knows about the existence of the planets, scientists are scrambling to learn more about them. However, with no ability to send anything directly, there are limitations on what we can currently learn, and the scientists are keen to stress that any life found is highly unlikely to be sentient.

“I’m just talking about slime here – it’s far easier to evolve than sentient beings.” said Victoria Meadows of the University of Washington, the principal investigator for the NASA Astrobiology Institute’s Virtual Planetary Laboratory. “The majority of life we find out there is likely to be single cell, relatively primitive life.”

However, when the James Webb Space Telescope (JWST) finally comes online next year, scientists will be able to start looking for an atmosphere.

The majority of life we find out there is likely to be single cell, relatively primitive life.

“We will look at the atmosphere for gases that do not belong – gases  that might be attributed to life,” said Sara Seager, a professor of planetary science and physics at MIT, in a Reddit AMA. “We will not know if the gases are produced by microbial life or by intelligent alien species.”

Beyond that, we will need to build more sophisticated equipment if we are to determine what the flora and fauna of Trappist-1 is really like.

“In order to see vegetation and any other surface features (e.g. oceans, continents), we’ll need future telescopes beyond JWST that will be able to directly image exoplanets,” added Giada Arney, an astrobiologist at NASA Goddard Space Flight Center.

“We’ll need farther future technology that may become available in the coming decades that will allow us to block out the star’s light and observe the planets directly.”

Scientists, software developers and artists have begun using VR to visualise genes and predict disease

A group of scientists, software developers and artists have taken to using virtual reality (VR) technology to visualise complex interactions between genes and their regulatory elements.

The team, which comprises of members from Oxford University, Universita’ di Napoli and Goldsmiths, University of London, have been using VR to visualise simulations of a composite of data from genome sequencing, data on the interactions of DNA and microscopy data.

When all this data is combined the team are provided with an interactive, 3D image that shows where different regions of the genome sit relative to others, and how they interact with each other.

“Being able to visualise such data is important because the human brain is very good at pattern recognition – we tend to think visually,” said Stephen Taylor, head of the Computational Biology Research Group at Oxford’s MRC Weatherall Institute of Molecular Medicine (WIMM).

“It began at a conference back in 2014 when we saw a demonstration by researchers from Goldsmiths who had used software called CSynth to model proteins in three dimensions. We began working with them, feeding in seemingly incomprehensible information derived from our studies of the human alpha globin gene cluster and we were amazed that what we saw on the screen was an instantly recognisable model.”

The team believe that being able to visualise the interactions between genes and their regulatory elements will allow them to understand the basis of human genetic diseases, and are currently applying their techniques to study genetic diseases such as diabetes, cancer and multiple sclerosis.

“Our ultimate aim in this area is to correct the faulty gene or its regulatory elements and be able to re-introduce the corrected cells into a patient’s bone marrow: to perfect this we have to fully understand how genes and their regulatory elements interact with one another” said Professor Doug Higgs, a principal researcher at the WIMM.

“Having virtual reality tools like this will enable researchers to efficiently combine their data to gain a much broader understanding of how the organisation of the genome affects gene expression, and how mutations and variants affect such interactions.”

There are around 37 trillion cells in the average adult human body, and each cell contains two meters of DNA tightly packed into its nucleus.

While the technology to sequence genomes is well established, it has been shown that the manner in which DNA is folded within each cell affects how genes are expressed.

“There are more than three billion base pairs in the human genome, and a change in just one of these can cause a problem. As a model we’ve been looking at the human alpha globin gene cluster to understand how variants in genes and their regulatory elements may cause human genetic disease,” said Prof Jim Hughes, associate professor of Genome Biology at Oxford University.

Using CRISPR, UK scientists edit DNA of human embryos

For the first time in the UK, scientists have altered human embryos. Using the gene-editing tool CRISPR, the scientists turned off the protein OCT4, which is thought to be important in early embryo development. In doing so, cells that normally go on to form the placenta, yolk sac and foetus failed to develop.

Source: BBC

Tesla and AMD developing AI chip for self-driving cars

Tesla has partnered with AMD to develop a dedicated chip that will handle autonomous driving tasks in its cars. Tesla's Autopilot programme is currently headed by former AMD chip architect Jim Keller, and it is said that more than 50 people are working on the initiative under his leadership.

Source: CNBC

Synthetic muscle developed that can lift 1,000 times its own weight

Scientists have used a 3D printing technique to create an artificial muscle that can lift 1,000 times its own weight. "It can push, pull, bend, twist, and lift weight. It's the closest artificial material equivalent we have to a natural muscle," said Dr Aslan Miriyev, from the Creative Machines lab.

Source: Telegraph

Head of AI at Google criticises "AI apocalypse" scaremongering

John Giannandrea, the senior vice president of engineering at Google, has condemned AI scaremongering, promoted by people like Elon Musk ."I just object to the hype and the sort of sound bites that some people have been making," said Giannandrea."I am definitely not worried about the AI apocalypse."

Source: CNBC

Scientists engineer antibody that attacks 99% of HIV strains

Scientists have engineered an antibody that attacks 99% of HIV strains and is built to attack three critical parts of the virus, which makes it harder for the HIV virus to resist its effects. The International Aids Society said it was an "exciting breakthrough". Human trials will begin in 2018.

Source: BBC

Facebook has a plan to stop fake news from influencing elections

Mark Zuckerberg has outlined nine steps that Facebook will take to "protect election integrity". “I care deeply about the democratic process and protecting its integrity," he said during a live broadcast on his Facebook page. "I don’t want anyone to use our tools to undermine our democracy.”