Stem cell therapy restores sight to blind mice

A transplantation treatment based on stem cells has moved closer to being tested in humans with severe vision problems, after successful trials in mice.

The method, which was shown to restore visual function in half of mice with end-stage retinal degeneration, involved transplanting retinal tissue derived from mouse induced pluripotent stem cells (iPSCs) into the host retina.

In order to create the transplant tissue, researchers first genetically reprogrammed skin cells taken from adult mice to an embryonic stem cell-like state before converting these iPSCs into retinal tissue. When transplanted into mice with end-stage retinal degeneration, the iPSC-derived retinal tissue developed to form photoreceptors that established direct contact with neighbouring cells in the retina.

The treatment, developed by senior study author Masayo Takahashi and first author Michiko Mandai of the RIKEN Center for Developmental Biology, was able to restore vision in roughly half of the mice with end-stage retinal degeneration. The research team are now testing the ability to replicate the results using human-derived iPSC retinal tissue.

“It is still a developing-stage therapy, and one cannot expect to restore practical vision at the moment,” Takahashi cautioned. “We will start from the stage of seeing a light or large figure, but hope to restore more substantial vision in the future.”

End-stage retinal degeneration is a leading cause of irreversible vision loss and blindness in older individuals. There is currently no cure and therapies are limited in their capability to stop the progression of vision loss.

The therapy strategy used by the RIKEN team is that of cell replacement, a method that, until now, suffered from uncertainty as to whether transplantation of stem cell tissues could actually restore visual function.

The key to success found by the researchers was the use of differentiated retinal tissues as opposed to retinal cells, which have previously been the focus of field use for most researchers. In almost all of the retinas that were transplanted, the researchers found at least some measure of response to light stimulation.

“The photoreceptors in the 3D structure can develop to form more mature, organized morphology, and therefore may respond better to light,” Takahashi explains. “From our data, the post-transplantation retina can respond to light already at one month in mice, but since the human retina takes a longer time to mature, it may take five to six months for the transplanted retina to start responding to light.”

Although simple light perception isn’t full restoration of sight, it is indicative of the possibilities of the treatment and shows that visual functions can be restored.

Takahashi’s acknowledgement of the increased complexity of human cells requires bearing in mind; it will not be a simple switchover from mice to human patients. However, if their new experiments into human-derived tissues prove successful, it may not be long before work can begin transferring this restorative success to clinical trials.

Atari tells fans its new Ataribox console will arrive in late 2018

Atari has revealed more details about its Ataribox videogame console today, with the company disclosing that the console will ship in late 2018 for somewhere between $249 and $299.

Atari says that it will launch the Ataribox on Indiegogo this autumn.

The company said it chose to launch the console in this way because it wants fans to be part of the launch, be able to gain access to early and special editions, as well as to make the Atari community “active partners” in the rollout of Ataribox.

“I was blown away when a 12-year-old knew every single game Atari had published. That’s brand magic. We’re coming in like a startup with a legacy,” said Ataribox creator and general manager Feargal Mac in an interview with VentureBeat.

“We’ve attracted a lot of interest, and AMD showed a lot of interest in supporting us and working with us. With Indiegogo, we also have a strong partnership.”

Images courtesy of Atari

Atari also revealed that its new console will come loaded with “tons of classic Atari retro games”, and the company is also working on developing current titles with a range of studios.

The Ataribox will be powered by an AMD customised processor, with Radeon Graphics technology, and will run Linux, with a customised, easy-to-use user interface.

The company believes this approach will mean that, as well as being a gaming device, the Ataribox will also be able to service as a complete entertainment unit that delivers a full PC experience for the TV, bringing users streaming, applications, social, browsing and music.

“People are used to the flexibility of a PC, but most connected TV devices have closed systems and content stores,” Mac said. “We wanted to create a killer TV product where people can game, stream and browse with as much freedom as possible, including accessing pre-owned games from other content providers.”

In previous releases, Atari has said that it would make two editions of its new console available: a wood edition and a black and red version.

After being asked by many fans, the company has revealed that the wood edition will be made from real wood.

Atari has asked that fans let it know what they think of the new console via its social channels

Scientists, software developers and artists have begun using VR to visualise genes and predict disease

A group of scientists, software developers and artists have taken to using virtual reality (VR) technology to visualise complex interactions between genes and their regulatory elements.

The team, which comprises of members from Oxford University, Universita’ di Napoli and Goldsmiths, University of London, have been using VR to visualise simulations of a composite of data from genome sequencing, data on the interactions of DNA and microscopy data.

When all this data is combined the team are provided with an interactive, 3D image that shows where different regions of the genome sit relative to others, and how they interact with each other.

“Being able to visualise such data is important because the human brain is very good at pattern recognition – we tend to think visually,” said Stephen Taylor, head of the Computational Biology Research Group at Oxford’s MRC Weatherall Institute of Molecular Medicine (WIMM).

“It began at a conference back in 2014 when we saw a demonstration by researchers from Goldsmiths who had used software called CSynth to model proteins in three dimensions. We began working with them, feeding in seemingly incomprehensible information derived from our studies of the human alpha globin gene cluster and we were amazed that what we saw on the screen was an instantly recognisable model.”

The team believe that being able to visualise the interactions between genes and their regulatory elements will allow them to understand the basis of human genetic diseases, and are currently applying their techniques to study genetic diseases such as diabetes, cancer and multiple sclerosis.

“Our ultimate aim in this area is to correct the faulty gene or its regulatory elements and be able to re-introduce the corrected cells into a patient’s bone marrow: to perfect this we have to fully understand how genes and their regulatory elements interact with one another” said Professor Doug Higgs, a principal researcher at the WIMM.

“Having virtual reality tools like this will enable researchers to efficiently combine their data to gain a much broader understanding of how the organisation of the genome affects gene expression, and how mutations and variants affect such interactions.”

There are around 37 trillion cells in the average adult human body, and each cell contains two meters of DNA tightly packed into its nucleus.

While the technology to sequence genomes is well established, it has been shown that the manner in which DNA is folded within each cell affects how genes are expressed.

“There are more than three billion base pairs in the human genome, and a change in just one of these can cause a problem. As a model we’ve been looking at the human alpha globin gene cluster to understand how variants in genes and their regulatory elements may cause human genetic disease,” said Prof Jim Hughes, associate professor of Genome Biology at Oxford University.