New tech could diagnose diseases like Parkinson’s by interpreting how quickly and often you blink

Researchers have developed a device that has the potential to diagnose neurological and autoimmune diseases by monitoring and interpreting eyelid movements.

The device, designed by researchers at the Technion-Israel Institute of Technology, attaches to glasses, and was first used to diagnose the disease blepharospasm dystonia, which is characterised by involuntary contraction of the muscles responsible for closing the eyes.

In using the device to spot blepharospasm dystonia, the researchers found a statistically significant quantitative relationship between a person’s eyelid pattern and the disease.

The tech was then used to examine the effect of Botox injections, the conventional treatment for the disease, and it was found that within 15 minutes contractions decrease and patients’ blinking rates begin to match the patterns associated with healthy people.

Image courtesy of The Technion-Israel Institute of Technology

“Eyelid motion provides us with meaningful information about the health of a patient,” said Adi Hanuka, a doctoral student at the Technion-Israel Institute of Technology.

“This motion can indicate not only eye diseases, but also neurological diseases such as Parkinson’s, and autoimmune diseases such as Grave’s. We developed a device that can be installed on the standard refraction glasses used in eye tests.”

According to the researchers, the device has the potential to diagnose every disease that is expressed neurologically, including many ocular and systemic such as Ptosis, Thyroid eye disease, Parkinson’s disease, Myasthenia Gravis, and neurologic diseases such as third and seventh cranial nerve palsy.

Lead researcher Adi Hanuka. Image courtesy of The Technion-Israel Institute of Technology

“Along with designing the product for purposes of commercialisation, we are working in several directions: developing the device as a platform for multidisciplinary research on various topics such as the effect of emotions on blinking patterns; eyelid communication amongst the paralyzed; and automatic diagnosis through machine learning and based on a computerized comparison between the specific monitoring and an extensive database,” said Hanuka.

In order to define the eyelid motion patterns, which includes blinking speed and frequency, of healthy people, measurements of approximately 100 subjects were collected.Eyelid motions were then analysed using a specifically tailored signal-processing algorithm.

Over the past two years, the device has been used in clinical trials at Haemek Medical Center in Afula, Israel.

Human habitat located on the Moon that will shield us from its extreme elements

Researchers have discovered a potential habitat on the Moon, which may protect astronauts from hazardous conditions on the surface.

No one has ever been on the Moon for longer than three days, largely because space suits alone can’t shield astronauts from its elements: extreme temperature variation, radiation, and meteorite impacts. Unlike Earth, the Moon also has no atmosphere or magnetic field to protects its inhabitants.

However, in a study published in Geophysical Research Letters, researchers have claimed that the safest place for astronauts to seek shelter is inside an intact lava tube.

“It’s important to know where and how big lunar lava tubes are if we’re ever going to construct a lunar base,” said Junichi Haruyama, a senior researcher at JAXA, Japan’s space agency.

Image courtesy of Purdue University/David Blair. Featured image courtesy of NASA/Goddard/Arizona State University

Lava tubes are naturally occurring channels formed when a lava flow develops a hard crust, which thickens and forms a roof above the still-flowing lava stream. Once the lava stops flowing, the tunnel sometimes drains, forming a hollow void.

The Lava tubes located by Purdue University researchers are said to be spacious enough to house one of the United States’ largest cities, and while their existence – and in particular their entrance near the Marius Hills Skylight – was previously known, their size was previously an unknown quantity.

“They knew about the skylight in the Marius Hills, but they didn’t have any idea how far that underground cavity might have gone,” said Jay Melosh, professor of Earth, Atmospheric and Planetary Sciences at Purdue University.

“Our group at Purdue used the gravity data over that area to infer that the opening was part of a larger system. By using this complimentary technique of radar, they were able to figure out how deep and high the cavities are.”

At the first meeting of the US’ reintroduced National Space Council, vice president Mike Pence announced that the Trump administration will redirect America’s focus to travelling back to the Moon.

Pence’s declaration marks a fundamental change for NASA, which abandoned plans to send people to the moon in favour of Mars under President Barack Obama.

“We will return NASA astronauts to the moon – not only to leave behind footprints and flags, but to build the foundation we need to send Americans to Mars and beyond,” Pence said.

 

Google’s Alphabet is Developing the Neighbourhood of the Future in Toronto

Alphabet, the parent company of Google, has announced that Sidewalk Labs, its urban innovation unit, will design a high-tech neighbourhood on Toronto’s waterfront. The neighbourhood, called Quayside, will prioritise, “environmental sustainability, affordability, mobility and economic opportunity”.

The initial phase for the development, part of the broader Sidewalk Toronto project, has received a $50m commitment from Sidewalk, but is predicted to cost at least a billion dollars by the time it’s fully completion.

As part of the broader project, Quayside seems to be the first attempt at creating what Sidewalk refers to as a “new kind of mixed-use, complete community”, an attempt the company presumably hopes to eventually expand across the waterfront and ultimately into other cities.

“This will not be a place where we deploy technology for its own sake, but rather one where we use emerging digital tools and the latest in urban design to solve big urban challenges in ways that we hope will inspire cities around the world,” Sidewalk Labs CEO Dan Doctoroff said on Tuesday.

Early concept images for the neighbourhood include self-driving cars and other infrastructure technologies. Images courtesy of Sidewalk Toronto

Located in the primarily publicly-owned 800-acre area called Port Lands, Quayside looks to be the test bed for potential future community design. With the planning process for the development starting with a community town hall on the 1st of November, we are still some ways off from knowing just what the neighbourhood will look like, but early illustrations include bikeshares, apartment housing, bus lines and parks.

More importantly, however, is Doctoroff’s previous discussions of what he believes future city design will look like. Technology focused, there’s been mention of sensors that track energy usage, machine learning and using high-speed internet to improve urban environments.

Specifically, at a summit hosted by The Information last year, he mentioned “thinking about [a city] from the internet up”. As would be expected from a company under the same parent as Google, Sidewalk seems to be concentrated on development that prioritises innovation and building communities with an eye to how technology can help found neighbourhoods.

“I like to describe it that we’re in the very early stages of what I call the fourth revolution of urban technology,” Doctoroff previously told Business Insider.

“The first three were the steam engine, which brought through trains and factories that industrialized cities. The second was the electric grid, which made cities 24 hours, made them more vertical, made them easier to get around in with subways and streetcars.

“The third was the automobile, which forced us to really re-think the use of public space in order to protect people from the danger of the automobile. We’re now in the fourth one. We’ve had an urban technology revolution … We’re seeing a real change in the physical nature of our cities.”