US Department of Transportation puts trust in innovators to deliver driverless cars

The US Department of Transportation (DoT) has released new guidance that calls for lighter regulation on driverless tech.

It is hoped that the new guidelines, titled ‘A Vision for Safety 2.0’, will stimulate innovation and to give the US a head start on global competitors in developing the technologies that will transform transport in coming decades.

The DoT’s guidance advises automakers and technology companies  to voluntarily submit safety assessments, while states are being asked to use a light regulatory hand.

“The new guidance supports further development of this important new technology, which has the potential to change the way we travel and how we deliver goods and services,” said US Transportation Secretary Elaine L. Chao.

“The safe deployment of automated vehicle technologies means we can look forward to a future with fewer traffic fatalities and increased mobility for all Americans.”

Featured image courtesy of Mercedes

Despite the DoT’s commitment to driverless technology, some consumer groups expressed dismay at the new guidlines.

The Consumer Watchdog, for one, argued that the autonomous vehicle guidelines posed a threat to highway safety, and called for the enactment of enforceable federal motor vehicle safety standards specifically covering self-driving cars.

“This isn’t a vision for safety,” said John M. Simpson, Consumer Watchdog’s privacy project director. “It’s a roadmap that allows manufacturers to do whatever they want, wherever and whenever they want, turning our roads into private laboratories for robot cars with no regard for our safety.”

A Vision for Safety 2.0 builds on the previous guidelines for autonomous vehicles issued by the Obama administration last year.

The new version is half the length of the original, and the new streamlined approach to driverless technology was welcomed by carmakers.

“The revised policy provides clear, streamlined, and flexible guidance for the safe and responsible design, manufacture, and deployment of self-driving vehicles,” General Motors said in response.

“General Motors appreciates DOT’s clarification of the separate roles of federal and state governments in regulating self-driving vehicles and its guidance for state policymakers.”

Scientists develop lab-grown bone using tech originally used to detect gravitational waves

Scientists have described how technology originally developed to detect gravitational waves can be used to generate lab-grown bone.

Universities of Glasgow, Strathclyde, the West of Scotland and Galway scientists have developed the technique known as nanokicking, which allows scientists to grow three-dimensional samples of mineralised bone in the laboratory for the first time.

The technique could eventually be used to repair or replace damaged sections of bone in humans.

“This is an exciting step forward for nanokicking, and it takes us one step further towards making the technique available for use in medical therapies,” said Matthew Dalby, professor of cell engineering at the University of Glasgow.

“Now that we have advanced the process to the point where it’s readily reproducible and affordable, we will begin our first human trials around three years from now in the NHS along with the Scottish National Blood Transfusion Service and reconstructive and orthopaedic surgeons in Glasgow.”

Although bone is the second most grafted tissue after blood and is used in reconstructive, orthopaedic and cosmetic surgeries, currently surgeons can only harvest limited amounts of living bone from the patient for use in a graft, and bone from other donors is likely to be rejected by the body.

Instead, at the minute, surgeons have to rely on inferior donor sources that contain no cells capable of regenerating bone, which limits the size of repairs they can affect.

“For many people who have lost legs in landmine accidents, the difference between being confined to a wheelchair and being able to use a prosthesis could be only a few centimetres of bone,” said professor of bioengineering at the University of Glasgow Manuel Salmeron-Sanchez.

However, the process of nanokicking subjects cells to ultra-precise, nanoscale vibrations while they are suspended inside collagen gels.

The cells in the gels are the turned into a ‘bone putty’ that has the potential to be used to heal bone fractures and fill bone where there is a gap.

Using patients’ own mesenchymal cells, which are naturally produced by the human body in bone marrow, surgeons will be able to prevent the problem of rejection, and can bridge larger gaps in bone.

Before beginning human trials, the nanokicking technique developed by the researchers is currently being further tested in a network of laboratories across the UK.

“We have already proven the effectiveness of our scaffolds in veterinary medicine, by helping to grow new bone to save the leg of a dog who would otherwise have had to have it amputated,” said Dalby.

“Combining bone putty and mechanically strong scaffolds will allow us to address large bone deficits in humans in the future.”

The scientists work has been funded by Sir Bobby Charlton’s landmine charity Find a Better Way, which help individuals and communities heal from the devastating impact of landmines and other explosive remnants of war, and is published in Nature Biomedical Engineering.