Flexible, near-transparent, ultrathin material heralds revolution in e-readers, wearables and solar energy

A new material that is only a few atoms thick could one day be the staple of solar panels, e-readers and a host of wearable technology after researchers built a series of demonstration devices to prove its ability to harness or emit light.

The material, which is named tungsten diselenide, is one of a group of materials that are just one molecule thick. Following advancements in nanotechnology, scientists are racing to investigate the potential of these materials for use in electronic devices that source, detect and control light, known at optoelectronics.

The research, which was undertaken by scientists at Massachusetts Institute of Technology (MIT), involved using tungsten diselenide to create a working diode that could be used to make a variety of optoelectronic devices.

Although the diode was just a working prototype, Mitsui career development associate professor of physics Pablo Jarillo-Herrero, who oversaw the research, said that its properties were “very close to the ideal”.

The technology has enormous potential within optoelectronics. Perhaps most significant of these is the possibilities for photovoltaics.

 MIT LED

The material could be used to make solar panels that were only millimetres thick, almost entirely transparent and very flexible. These could be used to turn almost any exterior surface into a solar panel – windows, walls and whole building facades could be wrapped in the material with minimal effect on appearance, potentially turning whole cities into massive solar power stations.

Buildings are not the only thing that this ultrathin solar panel could be attached to, however. The flexible nature of the material makes it suitable as part of clothing, meaning it could be worn by individuals and used to charge their smartphones, laptops and other devices.

The material’s other uses also lean towards wearables. One of the main uses is for LEDs, but with one advantage – unlike many other forms of LEDs, MIT says that “it should be possible to make LEDs that produce any colour”.

This could potentially make for a flexible surface with light patterns of video feeds that are tailored into clothing. It could also be idea for heads-up displays in cars and other vehicles, as well as for tables, kitchen worktops or other household services.


“The material could be used to make solar panels that were only millimetres thick, almost entirely transparent and very flexible.”


In an LED form the material could also be used to create an amazing e-reader – transparent and highly flexible but clearly displaying any content required.

The material can also be used to make photodetectors, or sensors that detect light. These are used across an enormous range of applications, from digital photography to medical devices. So if tungsten diselenide were to take off as a material, it could have wide-ranging impacts on many everyday gadgets and technologies.

The researchers also believe that the material could provide benefits in terms of speed and power consumption due to the material’s minute thickness.

Tungsten diselenide is made using selenium, a trace element that is found in metal sulfide ores, and which is a by-product of copper production.

If this material were to take off, selenium could – at least to some extent – replace silicon in electronic devices, which may pose a problem as there is less selenium on earth than there is silicon.

However, this may not be such a problem, as MIT postdoc Hugh Churchill explains: “It’s thousands or tens of thousands of times thinner [than conventional materials], so you’d use thousands of times less material to make devices of a given size.”


Body image courtesy of MIT.


In pictures: the week’s most futuristic designs

1-sky-whale

AWWA Sky Whale Concept Plane

Oscar Viñals’ amazing concept design for the Sky Whale plane emerged earlier this week. Featuring hybrid wing body architecture that gives it its flattened shape, the plane is designed to reduce drag and therefore use less fuel.


Image courtesy of Oscar Viñals.


2-tent-shelter

 

Weaved Tent Shelters

These stunning structures are tent shelters designed by Abeer Seikaly. A winner of the Lexus Design Award, the shelters are designed for use in the aftermath of natural disasters and use an innovative weaving method to provide their beautiful shape.


Image courtesy of Abeer Seikaly.


3-future-city

Flavours Orchard Green Living

Designed by Vincent Callebaut Architects, who previously brought us the now infamous lilypad city, this concept community is designed for Kunming, China. The concept combines communal growing, renewable energy and stunning living spaces into one incredible space.


Image courtesy of Vincent Callebaut Architects.


4-cone

Cone

This unassuming speaker design by Aether is actually extremely clever. Not only does is it operated by simple gestures, but it learns what you like as you use it.


Image courtesy of Aether.


5-towers

Residential Towers

What you are seeing here is an architectural visualisation of residential towers in Gurgaon, India. Developed by 3D rendering pros Pyxid Studio and designed by Upton-Hansen Architects, the towers are typical of some of the futuristic designs we’re seeing coming out of the subcontinent.


Image courtesy of Pyxid Studio.