Beyond biomimicry: Scientists find better-than-nature run style for six-legged robots

Researchers have found a running style for six-legged robots that significantly improves on the traditional nature-inspired method of movement.

The research, conducted by scientists at the École Polytechnique Fédérale de Lausanne (EPFL) and the University of Lausanne (UNIL) in Switzerland, found that as long as the robots are not equipped with insect-like adhesive pads, it is faster for them to move with only two legs on the ground at any given time.

Robotics has in the past few years made heavy use of biomimicry – the practice of mimicking natural systems – resulting in six-legged robots being designed to move like insects. In nature, insects use what is known as a tripod gait, where they have three legs on the ground at a time, so it had been assumed that this was the most efficient way for similarly legged robots to move.

However, by undertaking a series of computer simulations, tests on robots and experiments on Drosophila melanogaster – better known as the common fruit fly – the scientists found that the two-legged approach, which they have dubbed the bipod gait, results in faster and more efficient movement.

The core goal of the research, which is published today in the journal Nature Communications, was to confirm whether the long-held assumption that a tripod gait was best was indeed correct.

“We wanted to determine why insects use a tripod gait and identify whether it is, indeed, the fastest way for six-legged animals and robots to walk,” said Pavan Ramdya, study co-lead and corresponding author.

Initially, this involved the use of a simulated insect model based on the common fruit fly and an algorithm designed to mimic different evolutionary stages. This algorithm simulated different potential gaits to create a shortlist of those that it deemed to be the fastest.

This, however, shed light on why insects have a tripod gait – and why it may not be the best option for robots. The simulations showed that the traditional tripod gait works in combination with the adhesive pad found on the ends of insects’ legs to make climbing over vertical surfaces such as rocks easier and quicker.

Robots, however, are typically designed to walk along flat surfaces, and so the benefits of such a gait are lost.

“Our findings support the idea that insects use a tripod gait to most effectively walk on surfaces in three dimensions, and because their legs have adhesive properties. This confirms a long-standing biological hypothesis,” said Ramdya. “Ground robots should therefore break free from only using the tripod gait”.

Study co-lead authors Robin Thandiackal (left) and Pavan Ramdya with the six-legged robot used in the research. Images courtesy of EPFL/Alain Herzog

To for always corroborate the simulation’s findings, the researchers built a six-legged robot that could move either with a bipod or tripod gait, and which quickly confirmed the research by being faster when moving with just two legs on the ground at once.

However, they went further by confirming that the adhesive pads were in fact playing a role in the insect’s tripod movement.

They did this by equipping the fruit flies with tiny polymer boots that would cover the adhesive pads, and so remove their role in the way the insects moved. The flies’ responses confirms their theory: they began moving with a bipod-like gate rather than their conventional tripod-style movement.

“This result shows that, unlike most robots, animals can adapt to find new ways of walking under new circumstances,” said study co-lead author Robin Thandiackal.

As bizarre as the research sounds, it provides valuable new insights both for roboticists and biologists, and could lead to a new standard in the way that six legged robots are designed to move.

“There is a natural dialogue between robotics and biology: Many robot designers are inspired by nature and biologists can use robots to better understand the behavior of animal species,” added Thandiackal. “We believe that our work represents an important contribution to the study of animal and robotic locomotion.”

Google’s Alphabet is Developing the Neighbourhood of the Future in Toronto

Alphabet, the parent company of Google, has announced that Sidewalk Labs, its urban innovation unit, will design a high-tech neighbourhood on Toronto’s waterfront. The neighbourhood, called Quayside, will prioritise, “environmental sustainability, affordability, mobility and economic opportunity”.

The initial phase for the development, part of the broader Sidewalk Toronto project, has received a $50m commitment from Sidewalk, but is predicted to cost at least a billion dollars by the time it’s fully completion.

As part of the broader project, Quayside seems to be the first attempt at creating what Sidewalk refers to as a “new kind of mixed-use, complete community”, an attempt the company presumably hopes to eventually expand across the waterfront and ultimately into other cities.

“This will not be a place where we deploy technology for its own sake, but rather one where we use emerging digital tools and the latest in urban design to solve big urban challenges in ways that we hope will inspire cities around the world,” Sidewalk Labs CEO Dan Doctoroff said on Tuesday.

Early concept images for the neighbourhood include self-driving cars and other infrastructure technologies. Images courtesy of Sidewalk Toronto

Located in the primarily publicly-owned 800-acre area called Port Lands, Quayside looks to be the test bed for potential future community design. With the planning process for the development starting with a community town hall on the 1st of November, we are still some ways off from knowing just what the neighbourhood will look like, but early illustrations include bikeshares, apartment housing, bus lines and parks.

More importantly, however, is Doctoroff’s previous discussions of what he believes future city design will look like. Technology focused, there’s been mention of sensors that track energy usage, machine learning and using high-speed internet to improve urban environments.

Specifically, at a summit hosted by The Information last year, he mentioned “thinking about [a city] from the internet up”. As would be expected from a company under the same parent as Google, Sidewalk seems to be concentrated on development that prioritises innovation and building communities with an eye to how technology can help found neighbourhoods.

“I like to describe it that we’re in the very early stages of what I call the fourth revolution of urban technology,” Doctoroff previously told Business Insider.

“The first three were the steam engine, which brought through trains and factories that industrialized cities. The second was the electric grid, which made cities 24 hours, made them more vertical, made them easier to get around in with subways and streetcars.

“The third was the automobile, which forced us to really re-think the use of public space in order to protect people from the danger of the automobile. We’re now in the fourth one. We’ve had an urban technology revolution … We’re seeing a real change in the physical nature of our cities.”

DJI’s First Drone Arena in Tokyo to Open This Saturday

Consumer drone giant DJI will open its first Japanese drone arena in the city of Tokyo this Saturday, providing a space for both hardened professionals and curious newcomers to hone their flying skills.

The arena, which covers an area of 535 square metres, will not only include a large flying area complete with obstacles, but also offer a store where visitors can purchase the latest DJI drones and a technical support area where drone owners can get help with quadcopter issues.

The hope is that the arena will allow those who are curious about the technology but currently lack the space to try it out to get involved.

“As interest around our aerial technology continues to grow, the DJI Arena concept is a new way for us to engage not just hobbyists but also those considering this technology for their work or just for the thrill of flying,” said Moon Tae-Hyun, DJI’s director of brand management and operations.

“Having the opportunity to get behind the remote controller and trying out the technology first hand can enrich the customer experience. When people understand how it works or how easy it is to fly, they will discover what this technology can do for them and see a whole new world of possibilities.”

Images courtesy of DJI

In addition to its general sessions, which will allow members of the public to drop by and try their hand at flying drones, the arena will also offer private hire, including corporate events. For some companies, then, drone flying could become the new golf.

There will also be regular events, allowing pros to compete against one another, and drone training, in the form of DJI’s New Pilot Experience Program, for newcomers.

The arena has been launched in partnership with Japan Circuit, a developer of connected technologies, including drones.

“We are extremely excited to partner with DJI to launch the first DJI Arena in Japan,” said Tetsuhiro Sakai, CEO of Japan Circuit.

“Whether you are a skilled drone pilot or someone looking for their first drone, we welcome everyone to come and learn, experience it for themselves, and have fun. The new DJI Arena will not only serve as a gathering place for drone enthusiasts but also help us reach new customers and anyone interested in learning about this incredible technology.”

The arena is the second of its kind to be launched by DJI, with the first located in Yongin, South Korea, and detailed in the video above. .

Having opened in 2016, the area has attracted visitors from around the world, demonstrating serious demand for this type of entertainment space.

If the Tokyo launch goes well, it’s likely DJI will look at rolling out its arena concept to other cities, perhaps even bringing the model to the US and Europe.

For now, however, those who are interested can book time at the Tokyo arena here.