Cosmic radio burst traced back to distant dwarf galaxy

A burst of cosmic radio waves has finally been traced back to its source: an old dwarf galaxy located more than 3 billion light years from Earth.

Such bursts are rare and last only briefly, but have been of interest since their first detection almost ten years ago due to their appearance from outside our galaxy.

Fast radio bursts flash for just a few milliseconds and need to be very powerful in order to be observed from Earth. Combined with their origin being outside our galaxy, the fact that none of those originally observed were detected again has led to such bursts causing great interest in the astronomical community.

The Fornax dwarf galaxy, which, like the galaxy responsible for the cosmic radio burst, is significantly smaller than our own Milky Way. Image courtesy of ESO/Digitized Sky Survey 2

A repeating burst discovered in 2012 allowed researchers to monitor its area of the sky with the Karl Jansky Very Large Array (VLA) in New Mexico and the Arecibo radio dish in Puerto Rico.

The development of high-speed data recording and real-time data analysis software by an astronomer at the University of California, Berkeley, allowed the VLA to detect a total of nine bursts over the period of a month last year.

The VLA’s detection pinpointed the burst to within a tenth of an arcsecond, subsequent efforts by larger European and American radio interferometer arrays further narrowed it to within one-hundredth of an arcsecond, within a region about 100 light years in diameter. Deep imaging by the Gemini North Telescope followed and revealed an optically faint dwarf galaxy that the VLA found to continuously emit low-level radio waves.

Image courtesy of Danielle Futselaar (www.artsource.nl)

This emission is typical of a galaxy with an active nucleus perhaps indicative of a central supermassive black hole. It is also noted that extremely bright exploding stars – called superluminous supernovae – and long gamma ray bursts also occur in this type of galaxy. Both such events are believed to be associated with the massive, highly magnetic and rapidly rotating neutron stars called magnetars.

“All these threads point to the idea that in this environment, something generates these magnetars,” said co-author and UC Berkeley astronomer Casey Law.

“It could be created by a superluminous supernova or a long gamma ray burst, and then later on, as it evolves and its rotation slows down a bit, it produces these fast radio bursts as well as continuous radio emission powered by that spindown. Later on in life, it looks like the magnetars we see in our galaxy, which have extremely strong magnetic fields but rotate more like ordinary pulsars.”

Law’s theory is but one, though the new data has ruled out several explanations for the origin of the radio bursts that had previously been offered. Law’s team are the first to observe the bursts as a cosmological phenomenon and where said phenomenon is occurring; the objective now is to figure out the reason for the phenomenon’s occurrence.

Soviet report detailing lunar rover Lunokhod-2 released for first time

Russian space agency Roskosmos has released an unprecedented scientific report into the lunar rover Lunokhod-2 for the first time, revealing previously unknown details about the rover and how it was controlled back on Earth.

The report, written entirely in Russian, was originally penned in 1973 following the Lunokhod-2 mission, which was embarked upon in January of the same year. It had remained accessible to only a handful of experts at the space agency prior to its release today, to mark the 45th anniversary of the mission.

Bearing the names of some 55 engineers and scientists, the report details the systems that were used to both remotely control the lunar rover from a base on Earth, and capture images and data about the Moon’s surface and Lunokhod-2’s place on it. This information, and in particularly the carefully documented issues and solutions that the report carries, went on to be used in many later unmanned missions to other parts of the solar system.

As a result, it provides a unique insight into this era of space exploration and the technical challenges that scientists faced, such as the low-frame television system that functioned as the ‘eyes’ of the Earth-based rover operators.

A NASA depiction of the Lunokhod mission. Above: an image of the rover, courtesy of NASA, overlaid onto a panorama of the Moon taken by Lunokhod-2, courtesy of Ruslan Kasmin.

One detail that main be of particular interest to space enthusiasts and experts is the operation of a unique system called Seismas, which was tested for the first time in the world during the mission.

Designed to determine the precise location of the rover at any given time, the system involved transmitting information over lasers from ground-based telescopes, which was received by a photodetector onboard the lunar rover. When the laser was detected, this triggered the emission of a radio signal back to the Earth, which provided the rover’s coordinates.

Other details, while technical, also give some insight into the culture of the mission, such as the careful work to eliminate issues in the long-range radio communication system. One issue, for example, was worked on with such thoroughness that it resulted in one of the devices using more resources than it was allocated, a problem that was outlined in the report.

The document also provides insight into on-Earth technological capabilities of the time. While it is mostly typed, certain mathematical symbols have had to be written in by hand, and the report also features a number of diagrams and graphs that have been painstakingly hand-drawn.

A hand-drawn graph from the report, showing temperature changes during one of the monitoring sessions during the mission

Lunokhod-2 was the second of two unmanned lunar rovers to be landed on the Moon by the Soviet Union within the Lunokhod programme, having been delivered via a soft landing by the unmanned Luna 21 spacecraft in January 1973.

In operation between January and June of that year, the robot covered a distance of 39km, meaning it still holds the lunar distance record to this day.

One of only four rovers to be deployed on the lunar surface, Lunokhod-2 was the last rover to visit the Moon until December 2013, when Chinese lunar rover Yutu made its maiden visit.

Robot takes first steps towards building artificial lifeforms

A robot equipped with sophisticated AI has successfully simulated the creation of artificial lifeforms, in a key first step towards the eventual goal of creating true artificial life.

The robot, which was developed by scientists at the University of Glasgow, was able to model the creation of artificial lifeforms using unstable oil-in-water droplets. These droplets effectively played the role of living cells, demonstrating the potential of future research to develop living cells based on building blocks that cannot be found in nature.

Significantly, the robot also successfully predicted their properties before they were created, even though this could not be achieved using conventional physical models.

The robot, which was designed by Glasgow University’s Regius Chair of Chemistry, Professor Lee Cronin, is driven by machine learning and the principles of evolution.

It has been developed to autonomously create oil-in-water droplets with a host of different chemical makeups and then use image recognition to assess their behaviour.

Using this information, the robot was able to engineer droplets to have different properties­. Those which were found to be desirable could then be recreated at any time, using a specific digital code.

“This work is exciting as it shows that we are able to use machine learning and a novel robotic platform to understand the system in ways that cannot be done using conventional laboratory methods, including the discovery of ‘swarm’ like group behaviour of the droplets, akin to flocking birds,” said Cronin.

“Achieving lifelike behaviours such as this are important in our mission to make new lifeforms, and these droplets may be considered ‘protocells’ – simplified models of living cells.”

One of the oil droplets created by the robot

The research, which is published today in the journal PNAS, is one of several research projects being undertaken by Cronin and his team within the field of artificial lifeforms.

While the overarching goal is moving towards the creation of lifeforms using new and unprecedented building blocks, the research may also have more immediate potential applications.

The team believes that their work could also have applications in several practical areas, including the development of new methods for drug delivery or even innovative materials with functional properties.