If you had to retake control of a driverless car would you be ready?

Researchers from Stanford University have concluded that drivers who retake control of an autonomous car are more likely to be involved in an accident.

The study, published in the first issue of Science Robotics, found that roads could become especially dangerous when drivers made the transition back to being in control of autonomous vehicles due to changes in speed and other changes in driving conditions.

“Many people have been doing research on paying attention and situation awareness. That’s very important,” said lead author of the research and former graduate student in the Dynamic Design Lab at Stanford University, Holly Russell.

“But, in addition, there is this physical change and we need to acknowledge that people’s performance might not be at its peak if they haven’t actively been participating in the driving.”

Featured image courtesy of Steve Jurvetson

Featured image courtesy of Steve Jurvetson

During testing all drivers were given advance warning that they would be put back in control of a driverless car and were given the opportunity to drive around the testing track a number of times, so they could feel for themselves changes in speed or steering that may occur while the car drives itself.

However, during the trial itself, the drivers’ steering manoeuvres differed significantly from their ability when in control of the car from start to finish.

“Even knowing about the change, being able to make a plan and do some explicit motor planning for how to compensate, you still saw a very different steering behaviour and compromised performance,” said co-author of the research and research associate in the Revs Program at Stanford, Lene Harbott.

driverless-cars

Although no driver was so thrown off by the changes in steering that they drove off-course, the fact that there was a period of altered steering behaviour increased the likelihood of an accident occurring.

However, the Stanford study only addressed one specific example of the autonomous car to human driver handover; there is still a lot to learn about how people respond in other circumstances, depending on the type of car, the driver and how the driving conditions have changed.

“If someone is designing a method for automated vehicle handover, there will need to be detailed research on that specific method,” said Harbott. “This study is tip of an iceberg.”

Researchers discover remains of “Triassic Jaws” who dominated the seas after Earth’s most severe mass extinction event

Researchers have discovered the fossil remains of an unknown large predatory fish called Birgeria: an approximately 1.8-meter-long primitive bony fish with long jaws and sharp teeth that swallowed its prey whole.

Swiss and US researchers led by the Paleontological Institute and Museum of the University of Zurich say the Birgeria dominated the sea that once covered present-day Nevada one million years after the mass extinction.

Its period of dominance began following “the most catastrophic mass extinction on Earth”, which took place about 252 million years ago – at the boundary between the Permian and Triassic geological periods.

Image courtesy of UZH. Featured image courtesy of Nadine Bösch

Up to 90% of the marine species of that time were annihilated, and before the discovery of the Birgeria, palaeontologists had assumed that the first predators at the top of the food chain did not appear until the Middle Triassic epoch about 247 to 235 million years ago.

“The surprising find from Elko County in northeastern Nevada is one of the most completely preserved vertebrate remains from this time period ever discovered in the United States,” emphasises Carlo Romano, lead author of the study.

Although, species of Birgeria existed worldwide. The most recent discovery belongs to a previously unknown species called Birgeria Americana, and is the earliest example of a large-sized Birgeria species, about one and a half times longer than geologically older relatives.

The researchers say the discovery of Birgeria is proof that food chains recovered quicker than previously thought from Earth’s most devastating mass extinction event.

According to earlier studies, marine food chains were shortened after the mass extinction event and recovered only slowly and stepwise.

However, finds such as the newly discovered Birgeria species and the fossils of other vertebrates now show that so-called apex predators (animals at the very top of the food chain) already lived early after the mass extinction.

“The vertebrates from Nevada show that previous interpretations of past biotic crises and associated global changes were too simplistic,” said Romano.

Revolutionary DNA sunscreen gives better protection the longer its worn

Researchers have developed a ground-breaking sunscreen made of DNA that offers significant improvements over conventional versions.

Unlike current sunscreens, which need to be reapplied regularly to remain effective, the DNA sunscreen improves over time, offering greater protection the longer it is exposed to the sun.

In addition, it also keeps the skin hydrated, meaning it could also be beneficial as a treatment for wounds in extreme or adverse environments.

Developed by researchers from Binghamton University, State University of New York, the innovative sunscreen could prove essential as temperatures climb and many are increasingly at risk of conditions caused by excessive UV exposure, such as skin cancer.

“Ultraviolet (UV) light can actually damage DNA, and that’s not good for the skin,” said Guy German, assistant professor of biomedical engineering at Binghamton University.

“We thought, let’s flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin.”

The DNA sunscreen has the potential to become a standard, significantly improving the safety of spending time in the sun

The research, which is published today in the journal Scientific Reports, involved the development of thin crystalline DNA films.

These films are transparent in appearance, but able to absorb UV light; when the researchers exposed the film to UV light, they found that its absorption rate improved, meaning the more UV is was exposed to, the more it absorbed.

“If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen,” said German.

The film will no doubt attract the attention of sunscreen manufacturers, who will likely be keen to commercialise such a promising product. However, the researchers have not said if there is any interest as yet, and if there is any clear timeline to it becoming a commercial product.

 

The film’s properties are not just limited to sun protection, however. The DNA film can also store water at a far greater rate than conventional skin, limiting water evaporation and increasing the skin’s hydration.

As a result, the film is also being explored as a wound covering, as it would allow the wound to be protected from the sun, keep it moist – an important factor for improved healing – and allow the wound to be monitored without needing to remove the dressing.

“Not only do we think this might have applications for sunscreen and moisturizers directly, but if it’s optically transparent and prevents tissue damage from the sun and it’s good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments,” said German.